| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..81f49b77a3556cec1c0f49a5ad81ff43b2261fd7
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
|
| @@ -0,0 +1,194 @@
|
| +/*
|
| + * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +//
|
| +// Unit tests for intelligibility utils.
|
| +//
|
| +
|
| +#include <math.h>
|
| +#include <iostream>
|
| +#include <vector>
|
| +
|
| +#include "testing/gtest/include/gtest/gtest.h"
|
| +#include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h"
|
| +
|
| +using std::complex;
|
| +using std::vector;
|
| +
|
| +namespace webrtc {
|
| +
|
| +namespace intelligibility {
|
| +
|
| +vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) {
|
| + vector<vector<complex<float>>> data(samples);
|
| + for (int i = 0; i < samples; i++) {
|
| + data[i].resize(freqs);
|
| + for (int j = 0; j < freqs; j++) {
|
| + data[i][j].real(0.99f / ((i + 1) * (j + 1)));
|
| + data[i][j].imag(0.99f / ((i + 1) * (j + 1)));
|
| + }
|
| + }
|
| + return data;
|
| +}
|
| +
|
| +// Tests UpdateFactor.
|
| +TEST(IntelligibilityUtilsTest, TestUpdateFactor) {
|
| + EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0));
|
| + EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3));
|
| + EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1));
|
| + EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3));
|
| + EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1));
|
| +}
|
| +
|
| +// Tests cplxfinite, cplxnormal, and zerofudge.
|
| +TEST(IntelligibilityUtilsTest, TestCplx) {
|
| + complex<float> t;
|
| + t.real(1.f);
|
| + t.imag(0.f);
|
| + EXPECT_TRUE(intelligibility::cplxfinite(t));
|
| + EXPECT_FALSE(intelligibility::cplxnormal(t));
|
| + t = intelligibility::zerofudge(t);
|
| + EXPECT_NE(t.imag(), 0.f);
|
| + EXPECT_NE(t.real(), 0.f);
|
| + t.imag(1.f / 0.f);
|
| + EXPECT_FALSE(intelligibility::cplxfinite(t));
|
| + EXPECT_FALSE(intelligibility::cplxnormal(t));
|
| + t.imag(sqrt(-1.f));
|
| + EXPECT_FALSE(intelligibility::cplxfinite(t));
|
| + EXPECT_FALSE(intelligibility::cplxnormal(t));
|
| + t.imag(1.f);
|
| + EXPECT_TRUE(intelligibility::cplxfinite(t));
|
| + EXPECT_TRUE(intelligibility::cplxnormal(t));
|
| +}
|
| +
|
| +// Tests NewMean and AddToMean.
|
| +TEST(IntelligibilityUtilsTest, TestMeanUpdate) {
|
| + vector<complex<float>> data = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}};
|
| + vector<complex<float>> means = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}};
|
| + complex<float> mean(3, 8);
|
| + for (vector<int>::size_type i = 0; i < data.size(); i++) {
|
| + EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1));
|
| + AddToMean(data[i], i + 1, &mean);
|
| + EXPECT_EQ(means[i], mean);
|
| + }
|
| +}
|
| +
|
| +// Tests VarianceArray, for all variance step types.
|
| +TEST(IntelligibilityUtilsTest, TestVarianceArray) {
|
| + const int kFreqs = 10;
|
| + const int kSamples = 100;
|
| + const int kWindowSize = 10; // Should pass for all kWindowSize > 1.
|
| + const float kDecay = 0.5;
|
| + const vector<VarianceArray::StepType> step_types = {
|
| + VarianceArray::kStepInfinite,
|
| + VarianceArray::kStepDecaying,
|
| + VarianceArray::kStepWindowed,
|
| + VarianceArray::kStepBlocked,
|
| + VarianceArray::kStepBlockBasedMovingAverage};
|
| + const vector<vector<complex<float>>> test_data(
|
| + GenerateTestData(kFreqs, kSamples));
|
| + for (auto step_type : step_types) {
|
| + VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay);
|
| + EXPECT_EQ(0, variance_array.variance()[0]);
|
| + EXPECT_EQ(0, variance_array.array_mean());
|
| + variance_array.ApplyScale(2.0f);
|
| + EXPECT_EQ(0, variance_array.variance()[0]);
|
| + EXPECT_EQ(0, variance_array.array_mean());
|
| +
|
| + // Makes sure Step is doing something.
|
| + variance_array.Step(&test_data[0][0]);
|
| + for (int i = 1; i < kSamples; i++) {
|
| + variance_array.Step(&test_data[i][0]);
|
| + EXPECT_GE(variance_array.array_mean(), 0.0f);
|
| + EXPECT_LE(variance_array.array_mean(), 1.0f);
|
| + for (int j = 0; j < kFreqs; j++) {
|
| + EXPECT_GE(variance_array.variance()[j], 0.0f);
|
| + EXPECT_LE(variance_array.variance()[j], 1.0f);
|
| + }
|
| + }
|
| + variance_array.Clear();
|
| + EXPECT_EQ(0, variance_array.variance()[0]);
|
| + EXPECT_EQ(0, variance_array.array_mean());
|
| + }
|
| +}
|
| +
|
| +// Tests exact computation on synthetic data.
|
| +TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) {
|
| + // Exact, not unbiased estimates.
|
| + const float kTestVarianceBufferNotFull = 16.5f;
|
| + const float kTestVarianceBufferFull1 = 66.5f;
|
| + const float kTestVarianceBufferFull2 = 333.375f;
|
| + const int kFreqs = 2;
|
| + const int kSamples = 50;
|
| + const int kWindowSize = 2;
|
| + const float kDecay = 0.5f;
|
| + const float kMaxError = 0.0001f;
|
| +
|
| + VarianceArray variance_array(
|
| + kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay);
|
| +
|
| + vector<vector<complex<float>>> test_data(kSamples);
|
| + for (int i = 0; i < kSamples; i++) {
|
| + test_data[i].resize(kFreqs);
|
| + for (int j = 0; j < kFreqs; j++) {
|
| + if (i < 30) {
|
| + test_data[i][j].real(static_cast<float>(kSamples - i));
|
| + test_data[i][j].imag(static_cast<float>(i + 1));
|
| + } else {
|
| + test_data[i][j].real(0.f);
|
| + test_data[i][j].imag(0.f);
|
| + }
|
| + }
|
| + }
|
| +
|
| + for (int i = 0; i < kSamples; i++) {
|
| + variance_array.Step(&test_data[i][0]);
|
| + for (int j = 0; j < kFreqs; j++) {
|
| + if (i < 9) { // In utils, kWindowBlockSize = 10.
|
| + EXPECT_EQ(0, variance_array.variance()[j]);
|
| + } else if (i < 19) {
|
| + EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j],
|
| + kMaxError);
|
| + } else if (i < 39) {
|
| + EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j],
|
| + kMaxError);
|
| + } else if (i < 49) {
|
| + EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j],
|
| + kMaxError);
|
| + } else {
|
| + EXPECT_EQ(0, variance_array.variance()[j]);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Tests gain applier.
|
| +TEST(IntelligibilityUtilsTest, TestGainApplier) {
|
| + const int kFreqs = 10;
|
| + const int kSamples = 100;
|
| + const float kChangeLimit = 0.1f;
|
| + GainApplier gain_applier(kFreqs, kChangeLimit);
|
| + const vector<vector<complex<float>>> in_data(
|
| + GenerateTestData(kFreqs, kSamples));
|
| + vector<vector<complex<float>>> out_data(GenerateTestData(kFreqs, kSamples));
|
| + for (int i = 0; i < kSamples; i++) {
|
| + gain_applier.Apply(&in_data[i][0], &out_data[i][0]);
|
| + for (int j = 0; j < kFreqs; j++) {
|
| + EXPECT_GT(out_data[i][j].real(), 0.0f);
|
| + EXPECT_LT(out_data[i][j].real(), 1.0f);
|
| + EXPECT_GT(out_data[i][j].imag(), 0.0f);
|
| + EXPECT_LT(out_data[i][j].imag(), 1.0f);
|
| + }
|
| + }
|
| +}
|
| +
|
| +} // namespace intelligibility
|
| +
|
| +} // namespace webrtc
|
|
|