Chromium Code Reviews| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc |
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..5013e4c63f35ee322737168096f4246699cbd757 |
| --- /dev/null |
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc |
| @@ -0,0 +1,205 @@ |
| +/* |
| + * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| + * |
| + * Use of this source code is governed by a BSD-style license |
| + * that can be found in the LICENSE file in the root of the source |
| + * tree. An additional intellectual property rights grant can be found |
| + * in the file PATENTS. All contributing project authors may |
| + * be found in the AUTHORS file in the root of the source tree. |
| + */ |
| + |
| +// |
| +// Unit tests for intelligibility enhancer. |
| +// |
| + |
| +#include <math.h> |
| +#include <stdlib.h> |
| +#include <algorithm> |
| +#include <vector> |
| + |
| +#include "testing/gtest/include/gtest/gtest.h" |
| +#include "webrtc/base/arraysize.h" |
| +#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" |
| +#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" |
| + |
| +namespace webrtc { |
| + |
| +namespace { |
| + |
| +// Target output for ERB create test. Generated with matlab. |
| +const double kTestCenterFreqs[] = { |
| + 13.169, 26.965, 41.423, 56.577, 72.461, 89.113, 106.57, 124.88, |
| + 144.08, 164.21, 185.34, 207.5, 230.75, 255.16, 280.77, 307.66, |
| + 335.9, 365.56, 396.71, 429.44, 463.84, 500}; |
| +const double kTestFilterBank[][2] = {{0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0}, |
| + {0.055556, 0.2}, |
| + {0, 0.2}, |
| + {0, 0.2}, |
| + {0, 0.2}, |
| + {0, 0.2}}; |
| +static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestFilterBank), |
| + "Test filterbank badly initialized."); |
| + |
| +// Target output for gain solving test. Generated with matlab. |
| +const int kTestStartFreq = 12; // Lowest integral frequency for ERBs. |
| +const double kTestZeroVar[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| +static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestZeroVar), |
| + "Variance test data badly initialized."); |
| +const double kTestNonZeroVarLambdaTop[] = { |
| + 1, 1, 1, 1, 1, 1, 1, 1, |
| + 1, 1, 1, 0, 0, 0.0351, 0.0636, 0.0863, |
| + 0.1037, 0.1162, 0.1236, 0.1251, 0.1189, 0.0993}; |
| +static_assert(arraysize(kTestCenterFreqs) == |
| + arraysize(kTestNonZeroVarLambdaTop), |
| + "Variance test data badly initialized."); |
| +const float kMaxTestError = 0.005f; |
| + |
| +// Enhancer initialization parameters. |
| +const int kSamples = 2000; |
| +const int kErbResolution = 2; |
| +const int kSampleRate = 1000; |
| +const int kFragmentSize = kSampleRate / 100; |
| +const int kNumChannels = 1; |
| +const float kDecayRate = 0.9f; |
| +const int kWindowSize = 800; |
| +const int kAnalyzeRate = 800; |
| +const int kVarianceRate = 2; |
| +const float kGainLimit = 0.1f; |
| + |
| +} // namespace |
| + |
| +using std::vector; |
| +using intelligibility::VarianceArray; |
| + |
| +class IntelligibilityEnhancerTest : public ::testing::Test { |
| + protected: |
| + IntelligibilityEnhancerTest() |
| + : enh_(kErbResolution, |
| + kSampleRate, |
| + kNumChannels, |
| + VarianceArray::kStepInfinite, |
| + kDecayRate, |
| + kWindowSize, |
| + kAnalyzeRate, |
| + kVarianceRate, |
| + kGainLimit), |
| + clear_data_(kSamples), |
| + noise_data_(kSamples), |
| + orig_data_(kSamples) {} |
| + |
| + bool CheckUpdate(VarianceArray::StepType step_type) { |
| + IntelligibilityEnhancer enh(kErbResolution, kSampleRate, kNumChannels, |
| + step_type, kDecayRate, kWindowSize, |
| + kAnalyzeRate, kVarianceRate, kGainLimit); |
| + float* clear_cursor = &clear_data_[0]; |
| + float* noise_cursor = &noise_data_[0]; |
| + for (int i = 0; i < kSamples; i += kFragmentSize) { |
| + enh.ProcessCaptureAudio(&noise_cursor); |
| + enh.ProcessRenderAudio(&clear_cursor); |
| + clear_cursor += kFragmentSize; |
| + noise_cursor += kFragmentSize; |
| + } |
| + for (int i = 0; i < kSamples; i++) { |
| + if (std::fabs(clear_data_[i] - orig_data_[i]) > kMaxTestError) { |
| + return true; |
| + } |
| + } |
| + return false; |
| + } |
| + |
| + IntelligibilityEnhancer enh_; |
| + vector<float> clear_data_; |
| + vector<float> noise_data_; |
| + vector<float> orig_data_; |
| +}; |
| + |
| +// For each class of generated data, tests that render stream is |
| +// updated when it should be for each variance update method. |
| +TEST_F(IntelligibilityEnhancerTest, TestRenderUpdate) { |
| + vector<VarianceArray::StepType> step_types = { |
|
Andrew MacDonald
2015/07/09 03:22:47
I don't think you should bother now, but just so y
ekm
2015/07/09 18:19:22
Acknowledged. Will use in future tests.
|
| + VarianceArray::kStepInfinite, |
| + VarianceArray::kStepDecaying, |
| + VarianceArray::kStepWindowed, |
| + VarianceArray::kStepBlocked, |
| + VarianceArray::kStepBlockBasedMovingAverage}; |
| + std::fill(noise_data_.begin(), noise_data_.end(), 0.0f); |
| + std::fill(orig_data_.begin(), orig_data_.end(), 0.0f); |
| + for (auto step_type : step_types) { |
| + std::fill(clear_data_.begin(), clear_data_.end(), 0.0f); |
| + EXPECT_FALSE(CheckUpdate(step_type)); |
| + } |
| + std::srand(1); |
| + std::fill(noise_data_.begin(), noise_data_.end(), |
|
Andrew MacDonald
2015/07/09 03:22:47
This isn't doing what you want. It's filling noise
ekm
2015/07/09 18:19:22
Whoops. This is a very nice snippet, thanks. Done.
|
| + static_cast<float>(std::rand())); |
| + for (auto step_type : step_types) { |
| + EXPECT_FALSE(CheckUpdate(step_type)); |
| + } |
| + for (auto step_type : step_types) { |
| + std::fill(clear_data_.begin(), clear_data_.end(), |
| + static_cast<float>(std::rand())); |
| + orig_data_ = clear_data_; |
| + EXPECT_TRUE(CheckUpdate(step_type)); |
| + } |
| +} |
| + |
| +// Tests ERB bank creation, comparing against matlab output. |
| +TEST_F(IntelligibilityEnhancerTest, TestErbCreation) { |
| + ASSERT_EQ(static_cast<int>(arraysize(kTestCenterFreqs)), enh_.bank_size_); |
| + for (int i = 0; i < enh_.bank_size_; ++i) { |
| + EXPECT_NEAR(kTestCenterFreqs[i], enh_.center_freqs_[i], kMaxTestError); |
| + ASSERT_EQ(static_cast<int>(arraysize(kTestFilterBank[0])), enh_.freqs_); |
| + for (int j = 0; j < enh_.freqs_; ++j) { |
| + EXPECT_NEAR(kTestFilterBank[i][j], enh_.filter_bank_[i][j], |
| + kMaxTestError); |
| + } |
| + } |
| +} |
| + |
| +// Tests analytic solution for optimal gains, comparing |
| +// against matlab output. |
| +TEST_F(IntelligibilityEnhancerTest, TestSolveForGains) { |
| + ASSERT_EQ(kTestStartFreq, enh_.start_freq_); |
| + vector<float> sols(enh_.bank_size_); |
| + float lambda = -0.001f; |
| + for (int i = 0; i < enh_.bank_size_; i++) { |
| + enh_.filtered_clear_var_[i] = 0.0; |
| + enh_.filtered_noise_var_[i] = 0.0; |
| + enh_.rho_[i] = 0.02; |
| + } |
| + enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); |
| + for (int i = 0; i < enh_.bank_size_; i++) { |
| + EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError); |
| + } |
| + for (int i = 0; i < enh_.bank_size_; i++) { |
| + enh_.filtered_clear_var_[i] = static_cast<float>(i + 1); |
| + enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i); |
| + } |
| + enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); |
| + for (int i = 0; i < enh_.bank_size_; i++) { |
| + EXPECT_NEAR(kTestNonZeroVarLambdaTop[i], sols[i], kMaxTestError); |
| + } |
| + lambda = -1.0; |
| + enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); |
| + for (int i = 0; i < enh_.bank_size_; i++) { |
| + EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError); |
| + } |
| +} |
| + |
| +} // namespace webrtc |