Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(497)

Side by Side Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc

Issue 1207353002: Add new variance update option and unittests for intelligibility (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Simplified test data generation Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 //
12 // Unit tests for intelligibility enhancer.
13 //
14
15 #include <math.h>
16 #include <stdlib.h>
17 #include <algorithm>
18 #include <vector>
19
20 #include "testing/gtest/include/gtest/gtest.h"
21 #include "webrtc/base/arraysize.h"
22 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h"
23 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h"
24
25 namespace webrtc {
26
27 namespace {
28
29 // Target output for ERB create test. Generated with matlab.
30 const double kTestCenterFreqs[] = {
31 13.169, 26.965, 41.423, 56.577, 72.461, 89.113, 106.57, 124.88,
32 144.08, 164.21, 185.34, 207.5, 230.75, 255.16, 280.77, 307.66,
33 335.9, 365.56, 396.71, 429.44, 463.84, 500};
34 const double kTestFilterBank[][2] = {{0.055556, 0},
35 {0.055556, 0},
36 {0.055556, 0},
37 {0.055556, 0},
38 {0.055556, 0},
39 {0.055556, 0},
40 {0.055556, 0},
41 {0.055556, 0},
42 {0.055556, 0},
43 {0.055556, 0},
44 {0.055556, 0},
45 {0.055556, 0},
46 {0.055556, 0},
47 {0.055556, 0},
48 {0.055556, 0},
49 {0.055556, 0},
50 {0.055556, 0},
51 {0.055556, 0.2},
52 {0, 0.2},
53 {0, 0.2},
54 {0, 0.2},
55 {0, 0.2}};
56 static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestFilterBank),
57 "Test filterbank badly initialized.");
58
59 // Target output for gain solving test. Generated with matlab.
60 const int kTestStartFreq = 12; // Lowest integral frequency for ERBs.
61 const double kTestZeroVar[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
62 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
63 static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestZeroVar),
64 "Variance test data badly initialized.");
65 const double kTestNonZeroVarLambdaTop[] = {
66 1, 1, 1, 1, 1, 1, 1, 1,
67 1, 1, 1, 0, 0, 0.0351, 0.0636, 0.0863,
68 0.1037, 0.1162, 0.1236, 0.1251, 0.1189, 0.0993};
69 static_assert(arraysize(kTestCenterFreqs) ==
70 arraysize(kTestNonZeroVarLambdaTop),
71 "Variance test data badly initialized.");
72 const float kMaxTestError = 0.005f;
73
74 // Enhancer initialization parameters.
75 const int kSamples = 2000;
76 const int kErbResolution = 2;
77 const int kSampleRate = 1000;
78 const int kFragmentSize = kSampleRate / 100;
79 const int kNumChannels = 1;
80 const float kDecayRate = 0.9f;
81 const int kWindowSize = 800;
82 const int kAnalyzeRate = 800;
83 const int kVarianceRate = 2;
84 const float kGainLimit = 0.1f;
85
86 } // namespace
87
88 using std::vector;
89 using intelligibility::VarianceArray;
90
91 class IntelligibilityEnhancerTest : public ::testing::Test {
92 protected:
93 IntelligibilityEnhancerTest()
94 : enh_(kErbResolution,
95 kSampleRate,
96 kNumChannels,
97 VarianceArray::kStepInfinite,
98 kDecayRate,
99 kWindowSize,
100 kAnalyzeRate,
101 kVarianceRate,
102 kGainLimit),
103 clear_data_(kSamples),
104 noise_data_(kSamples),
105 orig_data_(kSamples) {}
106
107 bool CheckUpdate(VarianceArray::StepType step_type) {
108 IntelligibilityEnhancer enh(kErbResolution, kSampleRate, kNumChannels,
109 step_type, kDecayRate, kWindowSize,
110 kAnalyzeRate, kVarianceRate, kGainLimit);
111 float* clear_cursor = &clear_data_[0];
112 float* noise_cursor = &noise_data_[0];
113 for (int i = 0; i < kSamples; i += kFragmentSize) {
114 enh.ProcessCaptureAudio(&noise_cursor);
115 enh.ProcessRenderAudio(&clear_cursor);
116 clear_cursor += kFragmentSize;
117 noise_cursor += kFragmentSize;
118 }
119 for (int i = 0; i < kSamples; i++) {
120 if (std::fabs(clear_data_[i] - orig_data_[i]) > kMaxTestError) {
121 return true;
122 }
123 }
124 return false;
125 }
126
127 IntelligibilityEnhancer enh_;
128 vector<float> clear_data_;
129 vector<float> noise_data_;
130 vector<float> orig_data_;
131 };
132
133 // For each class of generated data, tests that render stream is
134 // updated when it should be for each variance update method.
135 TEST_F(IntelligibilityEnhancerTest, TestRenderUpdate) {
136 vector<VarianceArray::StepType> step_types = {
Andrew MacDonald 2015/07/09 03:22:47 I don't think you should bother now, but just so y
ekm 2015/07/09 18:19:22 Acknowledged. Will use in future tests.
137 VarianceArray::kStepInfinite,
138 VarianceArray::kStepDecaying,
139 VarianceArray::kStepWindowed,
140 VarianceArray::kStepBlocked,
141 VarianceArray::kStepBlockBasedMovingAverage};
142 std::fill(noise_data_.begin(), noise_data_.end(), 0.0f);
143 std::fill(orig_data_.begin(), orig_data_.end(), 0.0f);
144 for (auto step_type : step_types) {
145 std::fill(clear_data_.begin(), clear_data_.end(), 0.0f);
146 EXPECT_FALSE(CheckUpdate(step_type));
147 }
148 std::srand(1);
149 std::fill(noise_data_.begin(), noise_data_.end(),
Andrew MacDonald 2015/07/09 03:22:47 This isn't doing what you want. It's filling noise
ekm 2015/07/09 18:19:22 Whoops. This is a very nice snippet, thanks. Done.
150 static_cast<float>(std::rand()));
151 for (auto step_type : step_types) {
152 EXPECT_FALSE(CheckUpdate(step_type));
153 }
154 for (auto step_type : step_types) {
155 std::fill(clear_data_.begin(), clear_data_.end(),
156 static_cast<float>(std::rand()));
157 orig_data_ = clear_data_;
158 EXPECT_TRUE(CheckUpdate(step_type));
159 }
160 }
161
162 // Tests ERB bank creation, comparing against matlab output.
163 TEST_F(IntelligibilityEnhancerTest, TestErbCreation) {
164 ASSERT_EQ(static_cast<int>(arraysize(kTestCenterFreqs)), enh_.bank_size_);
165 for (int i = 0; i < enh_.bank_size_; ++i) {
166 EXPECT_NEAR(kTestCenterFreqs[i], enh_.center_freqs_[i], kMaxTestError);
167 ASSERT_EQ(static_cast<int>(arraysize(kTestFilterBank[0])), enh_.freqs_);
168 for (int j = 0; j < enh_.freqs_; ++j) {
169 EXPECT_NEAR(kTestFilterBank[i][j], enh_.filter_bank_[i][j],
170 kMaxTestError);
171 }
172 }
173 }
174
175 // Tests analytic solution for optimal gains, comparing
176 // against matlab output.
177 TEST_F(IntelligibilityEnhancerTest, TestSolveForGains) {
178 ASSERT_EQ(kTestStartFreq, enh_.start_freq_);
179 vector<float> sols(enh_.bank_size_);
180 float lambda = -0.001f;
181 for (int i = 0; i < enh_.bank_size_; i++) {
182 enh_.filtered_clear_var_[i] = 0.0;
183 enh_.filtered_noise_var_[i] = 0.0;
184 enh_.rho_[i] = 0.02;
185 }
186 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
187 for (int i = 0; i < enh_.bank_size_; i++) {
188 EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError);
189 }
190 for (int i = 0; i < enh_.bank_size_; i++) {
191 enh_.filtered_clear_var_[i] = static_cast<float>(i + 1);
192 enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i);
193 }
194 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
195 for (int i = 0; i < enh_.bank_size_; i++) {
196 EXPECT_NEAR(kTestNonZeroVarLambdaTop[i], sols[i], kMaxTestError);
197 }
198 lambda = -1.0;
199 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
200 for (int i = 0; i < enh_.bank_size_; i++) {
201 EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError);
202 }
203 }
204
205 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698