Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 // | |
| 12 // Unit tests for intelligibility enhancer. | |
| 13 // | |
| 14 | |
| 15 #include <math.h> | |
| 16 #include <stdlib.h> | |
| 17 #include <algorithm> | |
| 18 #include <vector> | |
| 19 | |
| 20 #include "testing/gtest/include/gtest/gtest.h" | |
| 21 #include "webrtc/base/arraysize.h" | |
| 22 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h" | |
| 23 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h" | |
| 24 | |
| 25 namespace webrtc { | |
| 26 | |
| 27 namespace { | |
| 28 | |
| 29 // Target output for ERB create test. Generated with matlab. | |
| 30 const double kTestCenterFreqs[] = { | |
| 31 13.169, 26.965, 41.423, 56.577, 72.461, 89.113, 106.57, 124.88, | |
| 32 144.08, 164.21, 185.34, 207.5, 230.75, 255.16, 280.77, 307.66, | |
| 33 335.9, 365.56, 396.71, 429.44, 463.84, 500}; | |
| 34 const double kTestFilterBank[][2] = {{0.055556, 0}, | |
| 35 {0.055556, 0}, | |
| 36 {0.055556, 0}, | |
| 37 {0.055556, 0}, | |
| 38 {0.055556, 0}, | |
| 39 {0.055556, 0}, | |
| 40 {0.055556, 0}, | |
| 41 {0.055556, 0}, | |
| 42 {0.055556, 0}, | |
| 43 {0.055556, 0}, | |
| 44 {0.055556, 0}, | |
| 45 {0.055556, 0}, | |
| 46 {0.055556, 0}, | |
| 47 {0.055556, 0}, | |
| 48 {0.055556, 0}, | |
| 49 {0.055556, 0}, | |
| 50 {0.055556, 0}, | |
| 51 {0.055556, 0.2}, | |
| 52 {0, 0.2}, | |
| 53 {0, 0.2}, | |
| 54 {0, 0.2}, | |
| 55 {0, 0.2}}; | |
| 56 static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestFilterBank), | |
| 57 "Test filterbank badly initialized."); | |
| 58 | |
| 59 // Target output for gain solving test. Generated with matlab. | |
| 60 const int kTestStartFreq = 12; // Lowest integral frequency for ERBs. | |
| 61 const double kTestZeroVar[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 62 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |
| 63 static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestZeroVar), | |
| 64 "Variance test data badly initialized."); | |
| 65 const double kTestNonZeroVarLambdaTop[] = { | |
| 66 1, 1, 1, 1, 1, 1, 1, 1, | |
| 67 1, 1, 1, 0, 0, 0.0351, 0.0636, 0.0863, | |
| 68 0.1037, 0.1162, 0.1236, 0.1251, 0.1189, 0.0993}; | |
| 69 static_assert(arraysize(kTestCenterFreqs) == | |
| 70 arraysize(kTestNonZeroVarLambdaTop), | |
| 71 "Variance test data badly initialized."); | |
| 72 const float kMaxTestError = 0.005f; | |
| 73 | |
| 74 // Enhancer initialization parameters. | |
| 75 const int kSamples = 2000; | |
| 76 const int kErbResolution = 2; | |
| 77 const int kSampleRate = 1000; | |
| 78 const int kFragmentSize = kSampleRate / 100; | |
| 79 const int kNumChannels = 1; | |
| 80 const float kDecayRate = 0.9f; | |
| 81 const int kWindowSize = 800; | |
| 82 const int kAnalyzeRate = 800; | |
| 83 const int kVarianceRate = 2; | |
| 84 const float kGainLimit = 0.1f; | |
| 85 | |
| 86 } // namespace | |
| 87 | |
| 88 using std::vector; | |
| 89 using intelligibility::VarianceArray; | |
| 90 | |
| 91 class IntelligibilityEnhancerTest : public ::testing::Test { | |
| 92 protected: | |
| 93 IntelligibilityEnhancerTest() | |
| 94 : enh_(kErbResolution, | |
| 95 kSampleRate, | |
| 96 kNumChannels, | |
| 97 VarianceArray::kStepInfinite, | |
| 98 kDecayRate, | |
| 99 kWindowSize, | |
| 100 kAnalyzeRate, | |
| 101 kVarianceRate, | |
| 102 kGainLimit), | |
| 103 clear_data_(kSamples), | |
| 104 noise_data_(kSamples), | |
| 105 orig_data_(kSamples) {} | |
| 106 | |
| 107 bool CheckUpdate(VarianceArray::StepType step_type) { | |
| 108 IntelligibilityEnhancer enh(kErbResolution, kSampleRate, kNumChannels, | |
| 109 step_type, kDecayRate, kWindowSize, | |
| 110 kAnalyzeRate, kVarianceRate, kGainLimit); | |
| 111 float* clear_cursor = &clear_data_[0]; | |
| 112 float* noise_cursor = &noise_data_[0]; | |
| 113 for (int i = 0; i < kSamples; i += kFragmentSize) { | |
| 114 enh.ProcessCaptureAudio(&noise_cursor); | |
| 115 enh.ProcessRenderAudio(&clear_cursor); | |
| 116 clear_cursor += kFragmentSize; | |
| 117 noise_cursor += kFragmentSize; | |
| 118 } | |
| 119 for (int i = 0; i < kSamples; i++) { | |
| 120 if (std::fabs(clear_data_[i] - orig_data_[i]) > kMaxTestError) { | |
| 121 return true; | |
| 122 } | |
| 123 } | |
| 124 return false; | |
| 125 } | |
| 126 | |
| 127 IntelligibilityEnhancer enh_; | |
| 128 vector<float> clear_data_; | |
| 129 vector<float> noise_data_; | |
| 130 vector<float> orig_data_; | |
| 131 }; | |
| 132 | |
| 133 // For each class of generated data, tests that render stream is | |
| 134 // updated when it should be for each variance update method. | |
| 135 TEST_F(IntelligibilityEnhancerTest, TestRenderUpdate) { | |
| 136 vector<VarianceArray::StepType> step_types = { | |
|
Andrew MacDonald
2015/07/09 03:22:47
I don't think you should bother now, but just so y
ekm
2015/07/09 18:19:22
Acknowledged. Will use in future tests.
| |
| 137 VarianceArray::kStepInfinite, | |
| 138 VarianceArray::kStepDecaying, | |
| 139 VarianceArray::kStepWindowed, | |
| 140 VarianceArray::kStepBlocked, | |
| 141 VarianceArray::kStepBlockBasedMovingAverage}; | |
| 142 std::fill(noise_data_.begin(), noise_data_.end(), 0.0f); | |
| 143 std::fill(orig_data_.begin(), orig_data_.end(), 0.0f); | |
| 144 for (auto step_type : step_types) { | |
| 145 std::fill(clear_data_.begin(), clear_data_.end(), 0.0f); | |
| 146 EXPECT_FALSE(CheckUpdate(step_type)); | |
| 147 } | |
| 148 std::srand(1); | |
| 149 std::fill(noise_data_.begin(), noise_data_.end(), | |
|
Andrew MacDonald
2015/07/09 03:22:47
This isn't doing what you want. It's filling noise
ekm
2015/07/09 18:19:22
Whoops. This is a very nice snippet, thanks. Done.
| |
| 150 static_cast<float>(std::rand())); | |
| 151 for (auto step_type : step_types) { | |
| 152 EXPECT_FALSE(CheckUpdate(step_type)); | |
| 153 } | |
| 154 for (auto step_type : step_types) { | |
| 155 std::fill(clear_data_.begin(), clear_data_.end(), | |
| 156 static_cast<float>(std::rand())); | |
| 157 orig_data_ = clear_data_; | |
| 158 EXPECT_TRUE(CheckUpdate(step_type)); | |
| 159 } | |
| 160 } | |
| 161 | |
| 162 // Tests ERB bank creation, comparing against matlab output. | |
| 163 TEST_F(IntelligibilityEnhancerTest, TestErbCreation) { | |
| 164 ASSERT_EQ(static_cast<int>(arraysize(kTestCenterFreqs)), enh_.bank_size_); | |
| 165 for (int i = 0; i < enh_.bank_size_; ++i) { | |
| 166 EXPECT_NEAR(kTestCenterFreqs[i], enh_.center_freqs_[i], kMaxTestError); | |
| 167 ASSERT_EQ(static_cast<int>(arraysize(kTestFilterBank[0])), enh_.freqs_); | |
| 168 for (int j = 0; j < enh_.freqs_; ++j) { | |
| 169 EXPECT_NEAR(kTestFilterBank[i][j], enh_.filter_bank_[i][j], | |
| 170 kMaxTestError); | |
| 171 } | |
| 172 } | |
| 173 } | |
| 174 | |
| 175 // Tests analytic solution for optimal gains, comparing | |
| 176 // against matlab output. | |
| 177 TEST_F(IntelligibilityEnhancerTest, TestSolveForGains) { | |
| 178 ASSERT_EQ(kTestStartFreq, enh_.start_freq_); | |
| 179 vector<float> sols(enh_.bank_size_); | |
| 180 float lambda = -0.001f; | |
| 181 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 182 enh_.filtered_clear_var_[i] = 0.0; | |
| 183 enh_.filtered_noise_var_[i] = 0.0; | |
| 184 enh_.rho_[i] = 0.02; | |
| 185 } | |
| 186 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
| 187 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 188 EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError); | |
| 189 } | |
| 190 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 191 enh_.filtered_clear_var_[i] = static_cast<float>(i + 1); | |
| 192 enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i); | |
| 193 } | |
| 194 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
| 195 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 196 EXPECT_NEAR(kTestNonZeroVarLambdaTop[i], sols[i], kMaxTestError); | |
| 197 } | |
| 198 lambda = -1.0; | |
| 199 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); | |
| 200 for (int i = 0; i < enh_.bank_size_; i++) { | |
| 201 EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError); | |
| 202 } | |
| 203 } | |
| 204 | |
| 205 } // namespace webrtc | |
| OLD | NEW |