| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc | 
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc | 
| index 145cc0872866db4effc4715000b979e54d5e723e..d67d200689f1613391c18c138b55f504a18ffde4 100644 | 
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc | 
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc | 
| @@ -14,36 +14,32 @@ | 
|  | 
| #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h" | 
|  | 
| +#include <math.h> | 
| +#include <string.h> | 
| #include <algorithm> | 
| -#include <cmath> | 
| -#include <cstring> | 
|  | 
| using std::complex; | 
| +using std::min; | 
| + | 
| +namespace webrtc { | 
|  | 
| -namespace { | 
| +namespace intelligibility { | 
|  | 
| -// Return |current| changed towards |target|, with the change being at most | 
| -// |limit|. | 
| -inline float UpdateFactor(float target, float current, float limit) { | 
| +float UpdateFactor(float target, float current, float limit) { | 
| float delta = fabsf(target - current); | 
| float sign = copysign(1.0f, target - current); | 
| return current + sign * fminf(delta, limit); | 
| } | 
|  | 
| -// std::isfinite for complex numbers. | 
| -inline bool cplxfinite(complex<float> c) { | 
| +bool cplxfinite(complex<float> c) { | 
| return std::isfinite(c.real()) && std::isfinite(c.imag()); | 
| } | 
|  | 
| -// std::isnormal for complex numbers. | 
| -inline bool cplxnormal(complex<float> c) { | 
| +bool cplxnormal(complex<float> c) { | 
| return std::isnormal(c.real()) && std::isnormal(c.imag()); | 
| } | 
|  | 
| -// Apply a small fudge to degenerate complex values. The numbers in the array | 
| -// were chosen randomly, so that even a series of all zeroes has some small | 
| -// variability. | 
| -inline complex<float> zerofudge(complex<float> c) { | 
| +complex<float> zerofudge(complex<float> c) { | 
| const static complex<float> fudge[7] = {{0.001f, 0.002f}, | 
| {0.008f, 0.001f}, | 
| {0.003f, 0.008f}, | 
| @@ -59,25 +55,14 @@ inline complex<float> zerofudge(complex<float> c) { | 
| return c; | 
| } | 
|  | 
| -// Incremental mean computation. Return the mean of the series with the | 
| -// mean |mean| with added |data|. | 
| -inline complex<float> NewMean(complex<float> mean, | 
| -                              complex<float> data, | 
| -                              int count) { | 
| +complex<float> NewMean(complex<float> mean, complex<float> data, int count) { | 
| return mean + (data - mean) / static_cast<float>(count); | 
| } | 
|  | 
| -inline void AddToMean(complex<float> data, int count, complex<float>* mean) { | 
| +void AddToMean(complex<float> data, int count, complex<float>* mean) { | 
| (*mean) = NewMean(*mean, data, count); | 
| } | 
|  | 
| -}  // namespace | 
| - | 
| -using std::min; | 
| - | 
| -namespace webrtc { | 
| - | 
| -namespace intelligibility { | 
|  | 
| static const int kWindowBlockSize = 10; | 
|  | 
| @@ -96,7 +81,8 @@ VarianceArray::VarianceArray(int freqs, | 
| decay_(decay), | 
| history_cursor_(0), | 
| count_(0), | 
| -      array_mean_(0.0f) { | 
| +      array_mean_(0.0f), | 
| +      buffer_full_(false) { | 
| history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 
| for (int i = 0; i < freqs_; ++i) { | 
| history_[i].reset(new complex<float>[window_size_]()); | 
| @@ -122,6 +108,9 @@ VarianceArray::VarianceArray(int freqs, | 
| case kStepBlocked: | 
| step_func_ = &VarianceArray::BlockedStep; | 
| break; | 
| +    case kStepBlockBasedMovingAverage: | 
| +      step_func_ = &VarianceArray::BlockBasedMovingAverage; | 
| +      break; | 
| } | 
| } | 
|  | 
| @@ -223,7 +212,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { | 
| // history window and a new block is started. The variances for the window | 
| // are recomputed from scratch at each of these transitions. | 
| void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 
| -  int blocks = min(window_size_, history_cursor_); | 
| +  int blocks = min(window_size_, history_cursor_ + 1); | 
| for (int i = 0; i < freqs_; ++i) { | 
| AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | 
| AddToMean(data[i] * std::conj(data[i]), count_ + 1, | 
| @@ -242,8 +231,8 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 
| running_mean_[i] = complex<float>(0.0f, 0.0f); | 
| running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 
| for (int j = 0; j < min(window_size_, history_cursor_); ++j) { | 
| -        AddToMean(subhistory_[i][j], j, &running_mean_[i]); | 
| -        AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); | 
| +        AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]); | 
| +        AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]); | 
| } | 
| ++history_cursor_; | 
| } | 
| @@ -254,6 +243,51 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 
| } | 
| } | 
|  | 
| +// Recomputes variances for each window from scratch based on previous window. | 
| +void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, | 
| +                                            bool /*dummy*/) { | 
| +  // TODO(ekmeyerson) To mitigate potential divergence, add counter so that | 
| +  // after every so often sums are computed scratch by summing over all | 
| +  // elements instead of subtracting oldest and adding newest. | 
| +  for (int i = 0; i < freqs_; ++i) { | 
| +    sub_running_mean_[i] += data[i]; | 
| +    sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); | 
| +  } | 
| +  ++count_; | 
| + | 
| +  // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow | 
| +  // experimentation with different block size,window size pairs. | 
| +  if (count_ >= kWindowBlockSize) { | 
| +    count_ = 0; | 
| + | 
| +    for (int i = 0; i < freqs_; ++i) { | 
| +      running_mean_[i] -= subhistory_[i][history_cursor_]; | 
| +      running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; | 
| + | 
| +      float scale = 1.f / kWindowBlockSize; | 
| +      subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; | 
| +      subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; | 
| + | 
| +      sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); | 
| +      sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); | 
| + | 
| +      running_mean_[i] += subhistory_[i][history_cursor_]; | 
| +      running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; | 
| + | 
| +      scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); | 
| +      variance_[i] = std::real(running_mean_sq_[i] * scale - | 
| +                               running_mean_[i] * scale * | 
| +                                   std::conj(running_mean_[i]) * scale); | 
| +    } | 
| + | 
| +    ++history_cursor_; | 
| +    if (history_cursor_ >= window_size_) { | 
| +      buffer_full_ = true; | 
| +      history_cursor_ = 0; | 
| +    } | 
| +  } | 
| +} | 
| + | 
| void VarianceArray::Clear() { | 
| memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); | 
| memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); | 
|  |