| OLD | NEW | 
|---|
| (Empty) |  | 
|  | 1 /* | 
|  | 2  *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | 
|  | 3  * | 
|  | 4  *  Use of this source code is governed by a BSD-style license | 
|  | 5  *  that can be found in the LICENSE file in the root of the source | 
|  | 6  *  tree. An additional intellectual property rights grant can be found | 
|  | 7  *  in the file PATENTS.  All contributing project authors may | 
|  | 8  *  be found in the AUTHORS file in the root of the source tree. | 
|  | 9  */ | 
|  | 10 | 
|  | 11 // | 
|  | 12 //  Unit tests for intelligibility utils. | 
|  | 13 // | 
|  | 14 | 
|  | 15 #include <math.h> | 
|  | 16 #include <iostream> | 
|  | 17 #include <vector> | 
|  | 18 | 
|  | 19 #include "testing/gtest/include/gtest/gtest.h" | 
|  | 20 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.
     h" | 
|  | 21 | 
|  | 22 using std::complex; | 
|  | 23 using std::vector; | 
|  | 24 | 
|  | 25 namespace webrtc { | 
|  | 26 | 
|  | 27 namespace intelligibility { | 
|  | 28 | 
|  | 29 vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) { | 
|  | 30   vector<vector<complex<float>>> data(samples); | 
|  | 31   for (int i = 0; i < samples; i++) { | 
|  | 32     data[i].resize(freqs); | 
|  | 33     for (int j = 0; j < freqs; j++) { | 
|  | 34       data[i][j].real(0.99f / ((i + 1) * (j + 1))); | 
|  | 35       data[i][j].imag(0.99f / ((i + 1) * (j + 1))); | 
|  | 36     } | 
|  | 37   } | 
|  | 38   return data; | 
|  | 39 } | 
|  | 40 | 
|  | 41 // Tests UpdateFactor. | 
|  | 42 TEST(IntelligibilityUtilsTest, TestUpdateFactor) { | 
|  | 43   EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0)); | 
|  | 44   EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3)); | 
|  | 45   EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1)); | 
|  | 46   EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3)); | 
|  | 47   EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1)); | 
|  | 48 } | 
|  | 49 | 
|  | 50 // Tests cplxfinite, cplxnormal, and zerofudge. | 
|  | 51 TEST(IntelligibilityUtilsTest, TestCplx) { | 
|  | 52   complex<float> t; | 
|  | 53   t.real(1.f); | 
|  | 54   t.imag(0.f); | 
|  | 55   EXPECT_TRUE(intelligibility::cplxfinite(t)); | 
|  | 56   EXPECT_FALSE(intelligibility::cplxnormal(t)); | 
|  | 57   t = intelligibility::zerofudge(t); | 
|  | 58   EXPECT_NE(t.imag(), 0.f); | 
|  | 59   EXPECT_NE(t.real(), 0.f); | 
|  | 60   t.imag(1.f / 0.f); | 
|  | 61   EXPECT_FALSE(intelligibility::cplxfinite(t)); | 
|  | 62   EXPECT_FALSE(intelligibility::cplxnormal(t)); | 
|  | 63   t.imag(sqrt(-1.f)); | 
|  | 64   EXPECT_FALSE(intelligibility::cplxfinite(t)); | 
|  | 65   EXPECT_FALSE(intelligibility::cplxnormal(t)); | 
|  | 66   t.imag(1.f); | 
|  | 67   EXPECT_TRUE(intelligibility::cplxfinite(t)); | 
|  | 68   EXPECT_TRUE(intelligibility::cplxnormal(t)); | 
|  | 69 } | 
|  | 70 | 
|  | 71 // Tests NewMean and AddToMean. | 
|  | 72 TEST(IntelligibilityUtilsTest, TestMeanUpdate) { | 
|  | 73   vector<complex<float>> data = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}}; | 
|  | 74   vector<complex<float>> means = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}}; | 
|  | 75   complex<float> mean(3, 8); | 
|  | 76   for (vector<int>::size_type i = 0; i < data.size(); i++) { | 
|  | 77     EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1)); | 
|  | 78     AddToMean(data[i], i + 1, &mean); | 
|  | 79     EXPECT_EQ(means[i], mean); | 
|  | 80   } | 
|  | 81 } | 
|  | 82 | 
|  | 83 // Tests VarianceArray, for all variance step types. | 
|  | 84 TEST(IntelligibilityUtilsTest, TestVarianceArray) { | 
|  | 85   const int kFreqs = 10; | 
|  | 86   const int kSamples = 100; | 
|  | 87   const int kWindowSize = 10;  // Should pass for all kWindowSize > 1. | 
|  | 88   const float kDecay = 0.5; | 
|  | 89   const vector<VarianceArray::StepType> step_types = { | 
|  | 90       VarianceArray::kStepInfinite, | 
|  | 91       VarianceArray::kStepDecaying, | 
|  | 92       VarianceArray::kStepWindowed, | 
|  | 93       VarianceArray::kStepBlocked, | 
|  | 94       VarianceArray::kStepBlockBasedMovingAverage}; | 
|  | 95   const vector<vector<complex<float>>> test_data( | 
|  | 96       GenerateTestData(kFreqs, kSamples)); | 
|  | 97   for (auto step_type : step_types) { | 
|  | 98     VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay); | 
|  | 99     EXPECT_EQ(0, variance_array.variance()[0]); | 
|  | 100     EXPECT_EQ(0, variance_array.array_mean()); | 
|  | 101     variance_array.ApplyScale(2.0f); | 
|  | 102     EXPECT_EQ(0, variance_array.variance()[0]); | 
|  | 103     EXPECT_EQ(0, variance_array.array_mean()); | 
|  | 104 | 
|  | 105     // Makes sure Step is doing something. | 
|  | 106     variance_array.Step(&test_data[0][0]); | 
|  | 107     for (int i = 1; i < kSamples; i++) { | 
|  | 108       variance_array.Step(&test_data[i][0]); | 
|  | 109       EXPECT_GE(variance_array.array_mean(), 0.0f); | 
|  | 110       EXPECT_LE(variance_array.array_mean(), 1.0f); | 
|  | 111       for (int j = 0; j < kFreqs; j++) { | 
|  | 112         EXPECT_GE(variance_array.variance()[j], 0.0f); | 
|  | 113         EXPECT_LE(variance_array.variance()[j], 1.0f); | 
|  | 114       } | 
|  | 115     } | 
|  | 116     variance_array.Clear(); | 
|  | 117     EXPECT_EQ(0, variance_array.variance()[0]); | 
|  | 118     EXPECT_EQ(0, variance_array.array_mean()); | 
|  | 119   } | 
|  | 120 } | 
|  | 121 | 
|  | 122 // Tests exact computation on synthetic data. | 
|  | 123 TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) { | 
|  | 124   // Exact, not unbiased estimates. | 
|  | 125   const float kTestVarianceBufferNotFull = 16.5f; | 
|  | 126   const float kTestVarianceBufferFull1 = 66.5f; | 
|  | 127   const float kTestVarianceBufferFull2 = 333.375f; | 
|  | 128   const int kFreqs = 2; | 
|  | 129   const int kSamples = 50; | 
|  | 130   const int kWindowSize = 2; | 
|  | 131   const float kDecay = 0.5f; | 
|  | 132   const float kMaxError = 0.0001f; | 
|  | 133 | 
|  | 134   VarianceArray variance_array( | 
|  | 135       kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay); | 
|  | 136 | 
|  | 137   vector<vector<complex<float>>> test_data(kSamples); | 
|  | 138   for (int i = 0; i < kSamples; i++) { | 
|  | 139     test_data[i].resize(kFreqs); | 
|  | 140     for (int j = 0; j < kFreqs; j++) { | 
|  | 141       if (i < 30) { | 
|  | 142         test_data[i][j].real(static_cast<float>(kSamples - i)); | 
|  | 143         test_data[i][j].imag(static_cast<float>(i + 1)); | 
|  | 144       } else { | 
|  | 145         test_data[i][j].real(0.f); | 
|  | 146         test_data[i][j].imag(0.f); | 
|  | 147       } | 
|  | 148     } | 
|  | 149   } | 
|  | 150 | 
|  | 151   for (int i = 0; i < kSamples; i++) { | 
|  | 152     variance_array.Step(&test_data[i][0]); | 
|  | 153     for (int j = 0; j < kFreqs; j++) { | 
|  | 154       if (i < 9) {  // In utils, kWindowBlockSize = 10. | 
|  | 155         EXPECT_EQ(0, variance_array.variance()[j]); | 
|  | 156       } else if (i < 19) { | 
|  | 157         EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j], | 
|  | 158                     kMaxError); | 
|  | 159       } else if (i < 39) { | 
|  | 160         EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j], | 
|  | 161                     kMaxError); | 
|  | 162       } else if (i < 49) { | 
|  | 163         EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j], | 
|  | 164                     kMaxError); | 
|  | 165       } else { | 
|  | 166         EXPECT_EQ(0, variance_array.variance()[j]); | 
|  | 167       } | 
|  | 168     } | 
|  | 169   } | 
|  | 170 } | 
|  | 171 | 
|  | 172 // Tests gain applier. | 
|  | 173 TEST(IntelligibilityUtilsTest, TestGainApplier) { | 
|  | 174   const int kFreqs = 10; | 
|  | 175   const int kSamples = 100; | 
|  | 176   const float kChangeLimit = 0.1f; | 
|  | 177   GainApplier gain_applier(kFreqs, kChangeLimit); | 
|  | 178   const vector<vector<complex<float>>> in_data( | 
|  | 179       GenerateTestData(kFreqs, kSamples)); | 
|  | 180   vector<vector<complex<float>>> out_data(GenerateTestData(kFreqs, kSamples)); | 
|  | 181   for (int i = 0; i < kSamples; i++) { | 
|  | 182     gain_applier.Apply(&in_data[i][0], &out_data[i][0]); | 
|  | 183     for (int j = 0; j < kFreqs; j++) { | 
|  | 184       EXPECT_GT(out_data[i][j].real(), 0.0f); | 
|  | 185       EXPECT_LT(out_data[i][j].real(), 1.0f); | 
|  | 186       EXPECT_GT(out_data[i][j].imag(), 0.0f); | 
|  | 187       EXPECT_LT(out_data[i][j].imag(), 1.0f); | 
|  | 188     } | 
|  | 189   } | 
|  | 190 } | 
|  | 191 | 
|  | 192 }  // namespace intelligibility | 
|  | 193 | 
|  | 194 }  // namespace webrtc | 
| OLD | NEW | 
|---|