Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..490db2c646238422e41c8570d6cc35d084944943 |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc |
@@ -0,0 +1,205 @@ |
+/* |
+ * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+// |
+// Unit tests for intelligibility enhancer. |
+// |
+ |
+#include <math.h> |
+#include <stdlib.h> |
+#include <algorithm> |
+#include <vector> |
+ |
+#include "testing/gtest/include/gtest/gtest.h" |
+#include "webrtc/base/arraysize.h" |
+#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" |
+#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" |
+ |
+namespace webrtc { |
+ |
+namespace { |
+ |
+// Target output for ERB create test. Generated with matlab. |
+const float kTestCenterFreqs[] = { |
+ 13.169f, 26.965f, 41.423f, 56.577f, 72.461f, 89.113f, 106.57f, 124.88f, |
+ 144.08f, 164.21f, 185.34f, 207.5f, 230.75f, 255.16f, 280.77f, 307.66f, |
+ 335.9f, 365.56f, 396.71f, 429.44f, 463.84f, 500.f}; |
+const float kTestFilterBank[][2] = {{0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.f}, |
+ {0.055556f, 0.2f}, |
+ {0, 0.2f}, |
+ {0, 0.2f}, |
+ {0, 0.2f}, |
+ {0, 0.2f}}; |
+static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestFilterBank), |
+ "Test filterbank badly initialized."); |
+ |
+// Target output for gain solving test. Generated with matlab. |
+const int kTestStartFreq = 12; // Lowest integral frequency for ERBs. |
+const float kTestZeroVar[] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, |
+ 1.f, 1.f, 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, |
+ 0.f, 0.f, 0.f, 0.f, 0.f, 0.f}; |
+static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestZeroVar), |
+ "Variance test data badly initialized."); |
+const float kTestNonZeroVarLambdaTop[] = { |
+ 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, |
+ 1.f, 1.f, 1.f, 0.f, 0.f, 0.0351f, 0.0636f, 0.0863f, |
+ 0.1037f, 0.1162f, 0.1236f, 0.1251f, 0.1189f, 0.0993f}; |
+static_assert(arraysize(kTestCenterFreqs) == |
+ arraysize(kTestNonZeroVarLambdaTop), |
+ "Variance test data badly initialized."); |
+const float kMaxTestError = 0.005f; |
+ |
+// Enhancer initialization parameters. |
+const int kSamples = 2000; |
+const int kErbResolution = 2; |
+const int kSampleRate = 1000; |
+const int kFragmentSize = kSampleRate / 100; |
+const int kNumChannels = 1; |
+const float kDecayRate = 0.9f; |
+const int kWindowSize = 800; |
+const int kAnalyzeRate = 800; |
+const int kVarianceRate = 2; |
+const float kGainLimit = 0.1f; |
+ |
+} // namespace |
+ |
+using std::vector; |
+using intelligibility::VarianceArray; |
+ |
+class IntelligibilityEnhancerTest : public ::testing::Test { |
+ protected: |
+ IntelligibilityEnhancerTest() |
+ : enh_(kErbResolution, |
+ kSampleRate, |
+ kNumChannels, |
+ VarianceArray::kStepInfinite, |
+ kDecayRate, |
+ kWindowSize, |
+ kAnalyzeRate, |
+ kVarianceRate, |
+ kGainLimit), |
+ clear_data_(kSamples), |
+ noise_data_(kSamples), |
+ orig_data_(kSamples) {} |
+ |
+ bool CheckUpdate(VarianceArray::StepType step_type) { |
+ IntelligibilityEnhancer enh(kErbResolution, kSampleRate, kNumChannels, |
+ step_type, kDecayRate, kWindowSize, |
+ kAnalyzeRate, kVarianceRate, kGainLimit); |
+ float* clear_cursor = &clear_data_[0]; |
+ float* noise_cursor = &noise_data_[0]; |
+ for (int i = 0; i < kSamples; i += kFragmentSize) { |
+ enh.ProcessCaptureAudio(&noise_cursor); |
+ enh.ProcessRenderAudio(&clear_cursor); |
+ clear_cursor += kFragmentSize; |
+ noise_cursor += kFragmentSize; |
+ } |
+ for (int i = 0; i < kSamples; i++) { |
+ if (std::fabs(clear_data_[i] - orig_data_[i]) > kMaxTestError) { |
+ return true; |
+ } |
+ } |
+ return false; |
+ } |
+ |
+ IntelligibilityEnhancer enh_; |
+ vector<float> clear_data_; |
+ vector<float> noise_data_; |
+ vector<float> orig_data_; |
+}; |
+ |
+// For each class of generated data, tests that render stream is |
+// updated when it should be for each variance update method. |
+TEST_F(IntelligibilityEnhancerTest, TestRenderUpdate) { |
+ vector<VarianceArray::StepType> step_types; |
+ step_types.push_back(VarianceArray::kStepInfinite); |
+ step_types.push_back(VarianceArray::kStepDecaying); |
+ step_types.push_back(VarianceArray::kStepWindowed); |
+ step_types.push_back(VarianceArray::kStepBlocked); |
+ step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage); |
+ std::fill(noise_data_.begin(), noise_data_.end(), 0.0f); |
+ std::fill(orig_data_.begin(), orig_data_.end(), 0.0f); |
+ for (auto step_type : step_types) { |
+ std::fill(clear_data_.begin(), clear_data_.end(), 0.0f); |
+ EXPECT_FALSE(CheckUpdate(step_type)); |
+ } |
+ std::srand(1); |
+ auto float_rand = []() { return std::rand() * 2.f / RAND_MAX - 1; }; |
+ std::generate(noise_data_.begin(), noise_data_.end(), float_rand); |
+ for (auto step_type : step_types) { |
+ EXPECT_FALSE(CheckUpdate(step_type)); |
+ } |
+ for (auto step_type : step_types) { |
+ std::generate(clear_data_.begin(), clear_data_.end(), float_rand); |
+ orig_data_ = clear_data_; |
+ EXPECT_TRUE(CheckUpdate(step_type)); |
+ } |
+} |
+ |
+// Tests ERB bank creation, comparing against matlab output. |
+TEST_F(IntelligibilityEnhancerTest, TestErbCreation) { |
+ ASSERT_EQ(static_cast<int>(arraysize(kTestCenterFreqs)), enh_.bank_size_); |
+ for (int i = 0; i < enh_.bank_size_; ++i) { |
+ EXPECT_NEAR(kTestCenterFreqs[i], enh_.center_freqs_[i], kMaxTestError); |
+ ASSERT_EQ(static_cast<int>(arraysize(kTestFilterBank[0])), enh_.freqs_); |
+ for (int j = 0; j < enh_.freqs_; ++j) { |
+ EXPECT_NEAR(kTestFilterBank[i][j], enh_.filter_bank_[i][j], |
+ kMaxTestError); |
+ } |
+ } |
+} |
+ |
+// Tests analytic solution for optimal gains, comparing |
+// against matlab output. |
+TEST_F(IntelligibilityEnhancerTest, TestSolveForGains) { |
+ ASSERT_EQ(kTestStartFreq, enh_.start_freq_); |
+ vector<float> sols(enh_.bank_size_); |
+ float lambda = -0.001f; |
+ for (int i = 0; i < enh_.bank_size_; i++) { |
+ enh_.filtered_clear_var_[i] = 0.0f; |
+ enh_.filtered_noise_var_[i] = 0.0f; |
+ enh_.rho_[i] = 0.02f; |
+ } |
+ enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); |
+ for (int i = 0; i < enh_.bank_size_; i++) { |
+ EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError); |
+ } |
+ for (int i = 0; i < enh_.bank_size_; i++) { |
+ enh_.filtered_clear_var_[i] = static_cast<float>(i + 1); |
+ enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i); |
+ } |
+ enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); |
+ for (int i = 0; i < enh_.bank_size_; i++) { |
+ EXPECT_NEAR(kTestNonZeroVarLambdaTop[i], sols[i], kMaxTestError); |
+ } |
+ lambda = -1.0; |
+ enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]); |
+ for (int i = 0; i < enh_.bank_size_; i++) { |
+ EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError); |
+ } |
+} |
+ |
+} // namespace webrtc |