Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
index 3029e21619a981917f377afb78075bfd66def952..1e766875caedc519004077e4a2ebfc1f993c9262 100644 |
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
@@ -17,8 +17,8 @@ |
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" |
-#include <cmath> |
-#include <cstdlib> |
+#include <math.h> |
+#include <stdlib.h> |
#include <algorithm> |
#include <numeric> |
@@ -27,26 +27,24 @@ |
#include "webrtc/common_audio/vad/include/webrtc_vad.h" |
#include "webrtc/common_audio/window_generator.h" |
-using std::complex; |
-using std::max; |
-using std::min; |
- |
namespace webrtc { |
-const int IntelligibilityEnhancer::kErbResolution = 2; |
-const int IntelligibilityEnhancer::kWindowSizeMs = 2; |
-const int IntelligibilityEnhancer::kChunkSizeMs = 10; // Size provided by APM. |
-const int IntelligibilityEnhancer::kAnalyzeRate = 800; |
-const int IntelligibilityEnhancer::kVarianceRate = 2; |
-const float IntelligibilityEnhancer::kClipFreq = 200.0f; |
-const float IntelligibilityEnhancer::kConfigRho = 0.02f; |
-const float IntelligibilityEnhancer::kKbdAlpha = 1.5f; |
+namespace { |
-// To disable gain update smoothing, set gain limit to be VERY high. |
-// TODO(ekmeyerson): Add option to disable gain smoothing altogether |
-// to avoid the extra computation. |
-const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f; |
+const int kErbResolution = 2; |
+const int kWindowSizeMs = 2; |
+const int kChunkSizeMs = 10; // Size provided by APM. |
+const float kClipFreq = 200.0f; |
+const float kConfigRho = 0.02f; // Default production and interpretation SNR. |
+const float kKbdAlpha = 1.5f; |
+const float kLambdaBot = -1.0f; // Extreme values in bisection |
+const float kLambdaTop = -10e-18f; // search for lamda. |
+} // namespace |
+ |
+using std::complex; |
+using std::max; |
+using std::min; |
using VarianceType = intelligibility::VarianceArray::StepType; |
IntelligibilityEnhancer::TransformCallback::TransformCallback( |
@@ -93,7 +91,7 @@ IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, |
noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f), |
filtered_clear_var_(new float[bank_size_]), |
filtered_noise_var_(new float[bank_size_]), |
- filter_bank_(nullptr), |
+ filter_bank_(bank_size_), |
center_freqs_(new float[bank_size_]), |
rho_(new float[bank_size_]), |
gains_eq_(new float[bank_size_]), |
@@ -149,7 +147,7 @@ IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, |
IntelligibilityEnhancer::~IntelligibilityEnhancer() { |
WebRtcVad_Free(vad_low_); |
WebRtcVad_Free(vad_high_); |
- free(filter_bank_); |
+ free(temp_out_buffer_); |
} |
void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) { |
@@ -203,8 +201,6 @@ void IntelligibilityEnhancer::DispatchAudio( |
void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, |
complex<float>* out_block) { |
- float power_target; |
- |
if (block_count_ < 2) { |
memset(out_block, 0, freqs_ * sizeof(*out_block)); |
++block_count_; |
@@ -216,8 +212,8 @@ void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, |
// based on experiments with different cutoffs. |
if (has_voice_low_ || true) { |
clear_variance_.Step(in_block, false); |
- power_target = std::accumulate(clear_variance_.variance(), |
- clear_variance_.variance() + freqs_, 0.0f); |
+ const float power_target = std::accumulate( |
+ clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.0f); |
if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { |
AnalyzeClearBlock(power_target); |
@@ -239,35 +235,46 @@ void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { |
FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); |
FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); |
- // Bisection search for optimal |lambda| |
- |
- float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda; |
- float power_bot, power_top, power; |
- SolveForGainsGivenLambda(lambda_top, start_freq_, gains_eq_.get()); |
- power_top = |
+ SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); |
+ const float power_top = |
DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
- SolveForGainsGivenLambda(lambda_bot, start_freq_, gains_eq_.get()); |
- power_bot = |
+ SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); |
+ const float power_bot = |
DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
- DCHECK(power_target >= power_bot && power_target <= power_top); |
+ if (power_target >= power_bot && power_target <= power_top) { |
+ SolveForLambda(power_target, power_bot, power_top); |
+ UpdateErbGains(); |
+ } // Else experiencing variance underflow, so do nothing. |
+} |
- float power_ratio = 2.0f; // Ratio of achieved power to target power. |
+void IntelligibilityEnhancer::SolveForLambda(float power_target, |
+ float power_bot, |
+ float power_top) { |
const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values |
const int kMaxIters = 100; // for these, based on experiments. |
+ |
+ const float reciprocal_power_target = 1.f / power_target; |
+ float lambda_bot = kLambdaBot; |
+ float lambda_top = kLambdaTop; |
+ float power_ratio = 2.0f; // Ratio of achieved power to target power. |
int iters = 0; |
- while (fabs(power_ratio - 1.0f) > kConvergeThresh && iters <= kMaxIters) { |
- lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
+ while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && |
+ iters <= kMaxIters) { |
+ const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); |
- power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
+ const float power = |
+ DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
if (power < power_target) { |
lambda_bot = lambda; |
} else { |
lambda_top = lambda; |
} |
- power_ratio = fabs(power / power_target); |
+ power_ratio = std::fabs(power * reciprocal_power_target); |
++iters; |
} |
+} |
+void IntelligibilityEnhancer::UpdateErbGains() { |
// (ERB gain) = filterbank' * (freq gain) |
float* gains = gain_applier_.target(); |
for (int i = 0; i < freqs_; ++i) { |
@@ -303,12 +310,8 @@ void IntelligibilityEnhancer::CreateErbBank() { |
center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; |
} |
- filter_bank_ = static_cast<float**>( |
- malloc(sizeof(*filter_bank_) * bank_size_ + |
- sizeof(**filter_bank_) * freqs_ * bank_size_)); |
for (int i = 0; i < bank_size_; ++i) { |
- filter_bank_[i] = |
- reinterpret_cast<float*>(filter_bank_ + bank_size_) + freqs_ * i; |
+ filter_bank_[i].resize(freqs_); |
} |
for (int i = 1; i <= bank_size_; ++i) { |
@@ -388,7 +391,7 @@ void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, |
void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { |
for (int i = 0; i < bank_size_; ++i) { |
- result[i] = DotProduct(filter_bank_[i], var, freqs_); |
+ result[i] = DotProduct(filter_bank_[i].data(), var, freqs_); |
} |
} |