Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(24)

Side by Side Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc

Issue 1207353002: Add new variance update option and unittests for intelligibility (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Merge Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 //
12 // Unit tests for intelligibility enhancer.
13 //
14
15 #include <math.h>
16 #include <stdlib.h>
17 #include <algorithm>
18 #include <vector>
19
20 #include "testing/gtest/include/gtest/gtest.h"
21 #include "webrtc/base/arraysize.h"
22 #include "webrtc/common_audio/signal_processing/include/signal_processing_librar y.h"
23 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h"
24
25 namespace webrtc {
26
27 namespace {
28
29 // Target output for ERB create test. Generated with matlab.
30 const float kTestCenterFreqs[] = {
31 13.169f, 26.965f, 41.423f, 56.577f, 72.461f, 89.113f, 106.57f, 124.88f,
32 144.08f, 164.21f, 185.34f, 207.5f, 230.75f, 255.16f, 280.77f, 307.66f,
33 335.9f, 365.56f, 396.71f, 429.44f, 463.84f, 500.f};
34 const float kTestFilterBank[][2] = {{0.055556f, 0.f},
35 {0.055556f, 0.f},
36 {0.055556f, 0.f},
37 {0.055556f, 0.f},
38 {0.055556f, 0.f},
39 {0.055556f, 0.f},
40 {0.055556f, 0.f},
41 {0.055556f, 0.f},
42 {0.055556f, 0.f},
43 {0.055556f, 0.f},
44 {0.055556f, 0.f},
45 {0.055556f, 0.f},
46 {0.055556f, 0.f},
47 {0.055556f, 0.f},
48 {0.055556f, 0.f},
49 {0.055556f, 0.f},
50 {0.055556f, 0.f},
51 {0.055556f, 0.2f},
52 {0, 0.2f},
53 {0, 0.2f},
54 {0, 0.2f},
55 {0, 0.2f}};
56 static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestFilterBank),
57 "Test filterbank badly initialized.");
58
59 // Target output for gain solving test. Generated with matlab.
60 const int kTestStartFreq = 12; // Lowest integral frequency for ERBs.
61 const float kTestZeroVar[] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f,
62 1.f, 1.f, 1.f, 0.f, 0.f, 0.f, 0.f, 0.f,
63 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
64 static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestZeroVar),
65 "Variance test data badly initialized.");
66 const float kTestNonZeroVarLambdaTop[] = {
67 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f,
68 1.f, 1.f, 1.f, 0.f, 0.f, 0.0351f, 0.0636f, 0.0863f,
69 0.1037f, 0.1162f, 0.1236f, 0.1251f, 0.1189f, 0.0993f};
70 static_assert(arraysize(kTestCenterFreqs) ==
71 arraysize(kTestNonZeroVarLambdaTop),
72 "Variance test data badly initialized.");
73 const float kMaxTestError = 0.005f;
74
75 // Enhancer initialization parameters.
76 const int kSamples = 2000;
77 const int kErbResolution = 2;
78 const int kSampleRate = 1000;
79 const int kFragmentSize = kSampleRate / 100;
80 const int kNumChannels = 1;
81 const float kDecayRate = 0.9f;
82 const int kWindowSize = 800;
83 const int kAnalyzeRate = 800;
84 const int kVarianceRate = 2;
85 const float kGainLimit = 0.1f;
86
87 } // namespace
88
89 using std::vector;
90 using intelligibility::VarianceArray;
91
92 class IntelligibilityEnhancerTest : public ::testing::Test {
93 protected:
94 IntelligibilityEnhancerTest()
95 : enh_(kErbResolution,
96 kSampleRate,
97 kNumChannels,
98 VarianceArray::kStepInfinite,
99 kDecayRate,
100 kWindowSize,
101 kAnalyzeRate,
102 kVarianceRate,
103 kGainLimit),
104 clear_data_(kSamples),
105 noise_data_(kSamples),
106 orig_data_(kSamples) {}
107
108 bool CheckUpdate(VarianceArray::StepType step_type) {
109 IntelligibilityEnhancer enh(kErbResolution, kSampleRate, kNumChannels,
110 step_type, kDecayRate, kWindowSize,
111 kAnalyzeRate, kVarianceRate, kGainLimit);
112 float* clear_cursor = &clear_data_[0];
113 float* noise_cursor = &noise_data_[0];
114 for (int i = 0; i < kSamples; i += kFragmentSize) {
115 enh.ProcessCaptureAudio(&noise_cursor);
116 enh.ProcessRenderAudio(&clear_cursor);
117 clear_cursor += kFragmentSize;
118 noise_cursor += kFragmentSize;
119 }
120 for (int i = 0; i < kSamples; i++) {
121 if (std::fabs(clear_data_[i] - orig_data_[i]) > kMaxTestError) {
122 return true;
123 }
124 }
125 return false;
126 }
127
128 IntelligibilityEnhancer enh_;
129 vector<float> clear_data_;
130 vector<float> noise_data_;
131 vector<float> orig_data_;
132 };
133
134 // For each class of generated data, tests that render stream is
135 // updated when it should be for each variance update method.
136 TEST_F(IntelligibilityEnhancerTest, TestRenderUpdate) {
137 vector<VarianceArray::StepType> step_types;
138 step_types.push_back(VarianceArray::kStepInfinite);
139 step_types.push_back(VarianceArray::kStepDecaying);
140 step_types.push_back(VarianceArray::kStepWindowed);
141 step_types.push_back(VarianceArray::kStepBlocked);
142 step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage);
143 std::fill(noise_data_.begin(), noise_data_.end(), 0.0f);
144 std::fill(orig_data_.begin(), orig_data_.end(), 0.0f);
145 for (auto step_type : step_types) {
146 std::fill(clear_data_.begin(), clear_data_.end(), 0.0f);
147 EXPECT_FALSE(CheckUpdate(step_type));
148 }
149 std::srand(1);
150 auto float_rand = []() { return std::rand() * 2.f / RAND_MAX - 1; };
151 std::generate(noise_data_.begin(), noise_data_.end(), float_rand);
152 for (auto step_type : step_types) {
153 EXPECT_FALSE(CheckUpdate(step_type));
154 }
155 for (auto step_type : step_types) {
156 std::generate(clear_data_.begin(), clear_data_.end(), float_rand);
157 orig_data_ = clear_data_;
158 EXPECT_TRUE(CheckUpdate(step_type));
159 }
160 }
161
162 // Tests ERB bank creation, comparing against matlab output.
163 TEST_F(IntelligibilityEnhancerTest, TestErbCreation) {
164 ASSERT_EQ(static_cast<int>(arraysize(kTestCenterFreqs)), enh_.bank_size_);
165 for (int i = 0; i < enh_.bank_size_; ++i) {
166 EXPECT_NEAR(kTestCenterFreqs[i], enh_.center_freqs_[i], kMaxTestError);
167 ASSERT_EQ(static_cast<int>(arraysize(kTestFilterBank[0])), enh_.freqs_);
168 for (int j = 0; j < enh_.freqs_; ++j) {
169 EXPECT_NEAR(kTestFilterBank[i][j], enh_.filter_bank_[i][j],
170 kMaxTestError);
171 }
172 }
173 }
174
175 // Tests analytic solution for optimal gains, comparing
176 // against matlab output.
177 TEST_F(IntelligibilityEnhancerTest, TestSolveForGains) {
178 ASSERT_EQ(kTestStartFreq, enh_.start_freq_);
179 vector<float> sols(enh_.bank_size_);
180 float lambda = -0.001f;
181 for (int i = 0; i < enh_.bank_size_; i++) {
182 enh_.filtered_clear_var_[i] = 0.0f;
183 enh_.filtered_noise_var_[i] = 0.0f;
184 enh_.rho_[i] = 0.02f;
185 }
186 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
187 for (int i = 0; i < enh_.bank_size_; i++) {
188 EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError);
189 }
190 for (int i = 0; i < enh_.bank_size_; i++) {
191 enh_.filtered_clear_var_[i] = static_cast<float>(i + 1);
192 enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i);
193 }
194 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
195 for (int i = 0; i < enh_.bank_size_; i++) {
196 EXPECT_NEAR(kTestNonZeroVarLambdaTop[i], sols[i], kMaxTestError);
197 }
198 lambda = -1.0;
199 enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
200 for (int i = 0; i < enh_.bank_size_; i++) {
201 EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError);
202 }
203 }
204
205 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698