| Index: webrtc/base/timestampaligner_unittest.cc
|
| diff --git a/webrtc/base/timestampaligner_unittest.cc b/webrtc/base/timestampaligner_unittest.cc
|
| deleted file mode 100644
|
| index a4c0e5a41fc4b8046bd54cd2dd282e8e9ac525d2..0000000000000000000000000000000000000000
|
| --- a/webrtc/base/timestampaligner_unittest.cc
|
| +++ /dev/null
|
| @@ -1,187 +0,0 @@
|
| -/*
|
| - * Copyright 2016 The WebRTC Project Authors. All rights reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -#include <math.h>
|
| -
|
| -#include <algorithm>
|
| -#include <limits>
|
| -
|
| -#include "webrtc/base/gunit.h"
|
| -#include "webrtc/base/random.h"
|
| -#include "webrtc/base/timestampaligner.h"
|
| -
|
| -namespace rtc {
|
| -
|
| -namespace {
|
| -// Computes the difference x_k - mean(x), when x_k is the linear sequence x_k =
|
| -// k, and the "mean" is plain mean for the first |window_size| samples, followed
|
| -// by exponential averaging with weight 1 / |window_size| for each new sample.
|
| -// This is needed to predict the effect of camera clock drift on the timestamp
|
| -// translation. See the comment on TimestampAligner::UpdateOffset for more
|
| -// context.
|
| -double MeanTimeDifference(int nsamples, int window_size) {
|
| - if (nsamples <= window_size) {
|
| - // Plain averaging.
|
| - return nsamples / 2.0;
|
| - } else {
|
| - // Exponential convergence towards
|
| - // interval_error * (window_size - 1)
|
| - double alpha = 1.0 - 1.0 / window_size;
|
| -
|
| - return ((window_size - 1) -
|
| - (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size));
|
| - }
|
| -}
|
| -
|
| -class TimestampAlignerForTest : public TimestampAligner {
|
| - // Make internal methods accessible to testing.
|
| - public:
|
| - using TimestampAligner::UpdateOffset;
|
| - using TimestampAligner::ClipTimestamp;
|
| -};
|
| -
|
| -void TestTimestampFilter(double rel_freq_error) {
|
| - TimestampAlignerForTest timestamp_aligner_for_test;
|
| - TimestampAligner timestamp_aligner;
|
| - const int64_t kEpoch = 10000;
|
| - const int64_t kJitterUs = 5000;
|
| - const int64_t kIntervalUs = 33333; // 30 FPS
|
| - const int kWindowSize = 100;
|
| - const int kNumFrames = 3 * kWindowSize;
|
| -
|
| - int64_t interval_error_us = kIntervalUs * rel_freq_error;
|
| - int64_t system_start_us = rtc::TimeMicros();
|
| - webrtc::Random random(17);
|
| -
|
| - int64_t prev_translated_time_us = system_start_us;
|
| -
|
| - for (int i = 0; i < kNumFrames; i++) {
|
| - // Camera time subject to drift.
|
| - int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us);
|
| - int64_t system_time_us = system_start_us + i * kIntervalUs;
|
| - // And system time readings are subject to jitter.
|
| - int64_t system_measured_us = system_time_us + random.Rand(kJitterUs);
|
| -
|
| - int64_t offset_us = timestamp_aligner_for_test.UpdateOffset(
|
| - camera_time_us, system_measured_us);
|
| -
|
| - int64_t filtered_time_us = camera_time_us + offset_us;
|
| - int64_t translated_time_us = timestamp_aligner_for_test.ClipTimestamp(
|
| - filtered_time_us, system_measured_us);
|
| -
|
| - // Check that we get identical result from the all-in-one helper method.
|
| - ASSERT_EQ(translated_time_us, timestamp_aligner.TranslateTimestamp(
|
| - camera_time_us, system_measured_us));
|
| -
|
| - EXPECT_LE(translated_time_us, system_measured_us);
|
| - EXPECT_GE(translated_time_us,
|
| - prev_translated_time_us + rtc::kNumMicrosecsPerMillisec);
|
| -
|
| - // The relative frequency error contributes to the expected error
|
| - // by a factor which is the difference between the current time
|
| - // and the average of earlier sample times.
|
| - int64_t expected_error_us =
|
| - kJitterUs / 2 +
|
| - rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize);
|
| -
|
| - int64_t bias_us = filtered_time_us - translated_time_us;
|
| - EXPECT_GE(bias_us, 0);
|
| -
|
| - if (i == 0) {
|
| - EXPECT_EQ(translated_time_us, system_measured_us);
|
| - } else {
|
| - EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us,
|
| - 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize)));
|
| - }
|
| - // If the camera clock runs too fast (rel_freq_error > 0.0), The
|
| - // bias is expected to roughly cancel the expected error from the
|
| - // clock drift, as this grows. Otherwise, it reflects the
|
| - // measurement noise. The tolerances here were selected after some
|
| - // trial and error.
|
| - if (i < 10 || rel_freq_error <= 0.0) {
|
| - EXPECT_LE(bias_us, 3000);
|
| - } else {
|
| - EXPECT_NEAR(bias_us, expected_error_us, 1500);
|
| - }
|
| - prev_translated_time_us = translated_time_us;
|
| - }
|
| -}
|
| -
|
| -} // Anonymous namespace
|
| -
|
| -TEST(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) {
|
| - TestTimestampFilter(0.0);
|
| -}
|
| -
|
| -// 100 ppm is a worst case for a reasonable crystal.
|
| -TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) {
|
| - TestTimestampFilter(0.0001);
|
| -}
|
| -
|
| -TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) {
|
| - TestTimestampFilter(-0.0001);
|
| -}
|
| -
|
| -// 3000 ppm, 3 ms / s, is the worst observed drift, see
|
| -// https://bugs.chromium.org/p/webrtc/issues/detail?id=5456
|
| -TEST(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) {
|
| - TestTimestampFilter(0.003);
|
| -}
|
| -
|
| -TEST(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) {
|
| - TestTimestampFilter(-0.003);
|
| -}
|
| -
|
| -// Exhibits a mostly hypothetical problem, where certain inputs to the
|
| -// TimestampAligner.UpdateOffset filter result in non-monotonous
|
| -// translated timestamps. This test verifies that the ClipTimestamp
|
| -// logic handles this case correctly.
|
| -TEST(TimestampAlignerTest, ClipToMonotonous) {
|
| - TimestampAlignerForTest timestamp_aligner;
|
| -
|
| - // For system time stamps { 0, s1, s1 + s2 }, and camera timestamps
|
| - // {0, c1, c1 + c2}, we exhibit non-monotonous behaviour if and only
|
| - // if c1 > s1 + 2 s2 + 4 c2.
|
| - const int kNumSamples = 3;
|
| - const int64_t camera_time_us[kNumSamples] = {0, 80000, 90001};
|
| - const int64_t system_time_us[kNumSamples] = {0, 10000, 20000};
|
| - const int64_t expected_offset_us[kNumSamples] = {0, -35000, -46667};
|
| -
|
| - // Non-monotonic translated timestamps can happen when only for
|
| - // translated timestamps in the future. Which is tolerated if
|
| - // |timestamp_aligner.clip_bias_us| is large enough. Instead of
|
| - // changing that private member for this test, just add the bias to
|
| - // |system_time_us| when calling ClipTimestamp.
|
| - const int64_t kClipBiasUs = 100000;
|
| -
|
| - bool did_clip = false;
|
| - int64_t prev_timestamp_us = std::numeric_limits<int64_t>::min();
|
| - for (int i = 0; i < kNumSamples; i++) {
|
| - int64_t offset_us =
|
| - timestamp_aligner.UpdateOffset(camera_time_us[i], system_time_us[i]);
|
| - EXPECT_EQ(offset_us, expected_offset_us[i]);
|
| -
|
| - int64_t translated_timestamp_us = camera_time_us[i] + offset_us;
|
| - int64_t clip_timestamp_us = timestamp_aligner.ClipTimestamp(
|
| - translated_timestamp_us, system_time_us[i] + kClipBiasUs);
|
| - if (translated_timestamp_us <= prev_timestamp_us) {
|
| - did_clip = true;
|
| - EXPECT_EQ(clip_timestamp_us,
|
| - prev_timestamp_us + rtc::kNumMicrosecsPerMillisec);
|
| - } else {
|
| - // No change from clipping.
|
| - EXPECT_EQ(clip_timestamp_us, translated_timestamp_us);
|
| - }
|
| - prev_timestamp_us = clip_timestamp_us;
|
| - }
|
| - EXPECT_TRUE(did_clip);
|
| -}
|
| -
|
| -} // namespace rtc
|
|
|