Index: webrtc/base/timestampaligner_unittest.cc |
diff --git a/webrtc/base/timestampaligner_unittest.cc b/webrtc/base/timestampaligner_unittest.cc |
deleted file mode 100644 |
index a4c0e5a41fc4b8046bd54cd2dd282e8e9ac525d2..0000000000000000000000000000000000000000 |
--- a/webrtc/base/timestampaligner_unittest.cc |
+++ /dev/null |
@@ -1,187 +0,0 @@ |
-/* |
- * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-#include <math.h> |
- |
-#include <algorithm> |
-#include <limits> |
- |
-#include "webrtc/base/gunit.h" |
-#include "webrtc/base/random.h" |
-#include "webrtc/base/timestampaligner.h" |
- |
-namespace rtc { |
- |
-namespace { |
-// Computes the difference x_k - mean(x), when x_k is the linear sequence x_k = |
-// k, and the "mean" is plain mean for the first |window_size| samples, followed |
-// by exponential averaging with weight 1 / |window_size| for each new sample. |
-// This is needed to predict the effect of camera clock drift on the timestamp |
-// translation. See the comment on TimestampAligner::UpdateOffset for more |
-// context. |
-double MeanTimeDifference(int nsamples, int window_size) { |
- if (nsamples <= window_size) { |
- // Plain averaging. |
- return nsamples / 2.0; |
- } else { |
- // Exponential convergence towards |
- // interval_error * (window_size - 1) |
- double alpha = 1.0 - 1.0 / window_size; |
- |
- return ((window_size - 1) - |
- (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size)); |
- } |
-} |
- |
-class TimestampAlignerForTest : public TimestampAligner { |
- // Make internal methods accessible to testing. |
- public: |
- using TimestampAligner::UpdateOffset; |
- using TimestampAligner::ClipTimestamp; |
-}; |
- |
-void TestTimestampFilter(double rel_freq_error) { |
- TimestampAlignerForTest timestamp_aligner_for_test; |
- TimestampAligner timestamp_aligner; |
- const int64_t kEpoch = 10000; |
- const int64_t kJitterUs = 5000; |
- const int64_t kIntervalUs = 33333; // 30 FPS |
- const int kWindowSize = 100; |
- const int kNumFrames = 3 * kWindowSize; |
- |
- int64_t interval_error_us = kIntervalUs * rel_freq_error; |
- int64_t system_start_us = rtc::TimeMicros(); |
- webrtc::Random random(17); |
- |
- int64_t prev_translated_time_us = system_start_us; |
- |
- for (int i = 0; i < kNumFrames; i++) { |
- // Camera time subject to drift. |
- int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us); |
- int64_t system_time_us = system_start_us + i * kIntervalUs; |
- // And system time readings are subject to jitter. |
- int64_t system_measured_us = system_time_us + random.Rand(kJitterUs); |
- |
- int64_t offset_us = timestamp_aligner_for_test.UpdateOffset( |
- camera_time_us, system_measured_us); |
- |
- int64_t filtered_time_us = camera_time_us + offset_us; |
- int64_t translated_time_us = timestamp_aligner_for_test.ClipTimestamp( |
- filtered_time_us, system_measured_us); |
- |
- // Check that we get identical result from the all-in-one helper method. |
- ASSERT_EQ(translated_time_us, timestamp_aligner.TranslateTimestamp( |
- camera_time_us, system_measured_us)); |
- |
- EXPECT_LE(translated_time_us, system_measured_us); |
- EXPECT_GE(translated_time_us, |
- prev_translated_time_us + rtc::kNumMicrosecsPerMillisec); |
- |
- // The relative frequency error contributes to the expected error |
- // by a factor which is the difference between the current time |
- // and the average of earlier sample times. |
- int64_t expected_error_us = |
- kJitterUs / 2 + |
- rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize); |
- |
- int64_t bias_us = filtered_time_us - translated_time_us; |
- EXPECT_GE(bias_us, 0); |
- |
- if (i == 0) { |
- EXPECT_EQ(translated_time_us, system_measured_us); |
- } else { |
- EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us, |
- 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize))); |
- } |
- // If the camera clock runs too fast (rel_freq_error > 0.0), The |
- // bias is expected to roughly cancel the expected error from the |
- // clock drift, as this grows. Otherwise, it reflects the |
- // measurement noise. The tolerances here were selected after some |
- // trial and error. |
- if (i < 10 || rel_freq_error <= 0.0) { |
- EXPECT_LE(bias_us, 3000); |
- } else { |
- EXPECT_NEAR(bias_us, expected_error_us, 1500); |
- } |
- prev_translated_time_us = translated_time_us; |
- } |
-} |
- |
-} // Anonymous namespace |
- |
-TEST(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) { |
- TestTimestampFilter(0.0); |
-} |
- |
-// 100 ppm is a worst case for a reasonable crystal. |
-TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) { |
- TestTimestampFilter(0.0001); |
-} |
- |
-TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) { |
- TestTimestampFilter(-0.0001); |
-} |
- |
-// 3000 ppm, 3 ms / s, is the worst observed drift, see |
-// https://bugs.chromium.org/p/webrtc/issues/detail?id=5456 |
-TEST(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) { |
- TestTimestampFilter(0.003); |
-} |
- |
-TEST(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) { |
- TestTimestampFilter(-0.003); |
-} |
- |
-// Exhibits a mostly hypothetical problem, where certain inputs to the |
-// TimestampAligner.UpdateOffset filter result in non-monotonous |
-// translated timestamps. This test verifies that the ClipTimestamp |
-// logic handles this case correctly. |
-TEST(TimestampAlignerTest, ClipToMonotonous) { |
- TimestampAlignerForTest timestamp_aligner; |
- |
- // For system time stamps { 0, s1, s1 + s2 }, and camera timestamps |
- // {0, c1, c1 + c2}, we exhibit non-monotonous behaviour if and only |
- // if c1 > s1 + 2 s2 + 4 c2. |
- const int kNumSamples = 3; |
- const int64_t camera_time_us[kNumSamples] = {0, 80000, 90001}; |
- const int64_t system_time_us[kNumSamples] = {0, 10000, 20000}; |
- const int64_t expected_offset_us[kNumSamples] = {0, -35000, -46667}; |
- |
- // Non-monotonic translated timestamps can happen when only for |
- // translated timestamps in the future. Which is tolerated if |
- // |timestamp_aligner.clip_bias_us| is large enough. Instead of |
- // changing that private member for this test, just add the bias to |
- // |system_time_us| when calling ClipTimestamp. |
- const int64_t kClipBiasUs = 100000; |
- |
- bool did_clip = false; |
- int64_t prev_timestamp_us = std::numeric_limits<int64_t>::min(); |
- for (int i = 0; i < kNumSamples; i++) { |
- int64_t offset_us = |
- timestamp_aligner.UpdateOffset(camera_time_us[i], system_time_us[i]); |
- EXPECT_EQ(offset_us, expected_offset_us[i]); |
- |
- int64_t translated_timestamp_us = camera_time_us[i] + offset_us; |
- int64_t clip_timestamp_us = timestamp_aligner.ClipTimestamp( |
- translated_timestamp_us, system_time_us[i] + kClipBiasUs); |
- if (translated_timestamp_us <= prev_timestamp_us) { |
- did_clip = true; |
- EXPECT_EQ(clip_timestamp_us, |
- prev_timestamp_us + rtc::kNumMicrosecsPerMillisec); |
- } else { |
- // No change from clipping. |
- EXPECT_EQ(clip_timestamp_us, translated_timestamp_us); |
- } |
- prev_timestamp_us = clip_timestamp_us; |
- } |
- EXPECT_TRUE(did_clip); |
-} |
- |
-} // namespace rtc |