| Index: webrtc/modules/audio_processing/aec3/suppression_gain.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/suppression_gain.cc b/webrtc/modules/audio_processing/aec3/suppression_gain.cc
|
| index 4bf452cbbea51563b86516e770385ac48d32ee33..86af60f316fa867e6f2276c8aac7311fd867fa44 100644
|
| --- a/webrtc/modules/audio_processing/aec3/suppression_gain.cc
|
| +++ b/webrtc/modules/audio_processing/aec3/suppression_gain.cc
|
| @@ -20,6 +20,7 @@
|
| #include <numeric>
|
|
|
| #include "webrtc/base/checks.h"
|
| +#include "webrtc/modules/audio_processing/aec3/vector_math.h"
|
|
|
| namespace webrtc {
|
| namespace {
|
| @@ -48,127 +49,9 @@ constexpr float kEchoMaskingMargin = 1.f / 20.f;
|
| constexpr float kBandMaskingFactor = 1.f / 10.f;
|
| constexpr float kTimeMaskingFactor = 1.f / 10.f;
|
|
|
| -} // namespace
|
| -
|
| -namespace aec3 {
|
| -
|
| -#if defined(WEBRTC_ARCH_X86_FAMILY)
|
| -
|
| -// Optimized SSE2 code for the gain computation.
|
| // TODO(peah): Add further optimizations, in particular for the divisions.
|
| -void ComputeGains_SSE2(
|
| - const std::array<float, kFftLengthBy2Plus1>& nearend_power,
|
| - const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
|
| - const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
|
| - float strong_nearend_margin,
|
| - std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
|
| - std::array<float, kFftLengthBy2Minus1>* previous_masker,
|
| - std::array<float, kFftLengthBy2Plus1>* gain) {
|
| - std::array<float, kFftLengthBy2Minus1> masker;
|
| - std::array<float, kFftLengthBy2Minus1> same_band_masker;
|
| - std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
|
| - std::array<bool, kFftLengthBy2Minus1> strong_nearend;
|
| - std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
|
| - std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
|
| -
|
| - // Precompute 1/residual_echo_power.
|
| - std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
|
| - one_by_residual_echo_power.begin(),
|
| - [](float a) { return a > 0.f ? 1.f / a : -1.f; });
|
| -
|
| - // Precompute indicators for bands with strong nearend.
|
| - std::transform(
|
| - residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
|
| - nearend_power.begin() + 1, strong_nearend.begin(),
|
| - [&](float a, float b) { return a <= strong_nearend_margin * b; });
|
| -
|
| - // Precompute masker for the same band.
|
| - std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
|
| - previous_masker->begin(), same_band_masker.begin(),
|
| - [&](float a, float b) { return a + kTimeMaskingFactor * b; });
|
| -
|
| - for (int k = 0; k < kNumIterations; ++k) {
|
| - if (k == 0) {
|
| - // Add masker from the same band.
|
| - std::copy(same_band_masker.begin(), same_band_masker.end(),
|
| - masker.begin());
|
| - } else {
|
| - // Add masker for neighboring bands.
|
| - std::transform(nearend_power.begin(), nearend_power.end(),
|
| - gain_squared->begin(), neighboring_bands_masker.begin(),
|
| - std::multiplies<float>());
|
| - std::transform(neighboring_bands_masker.begin(),
|
| - neighboring_bands_masker.end(),
|
| - comfort_noise_power.begin(),
|
| - neighboring_bands_masker.begin(), std::plus<float>());
|
| - std::transform(
|
| - neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
|
| - neighboring_bands_masker.begin() + 2, masker.begin(),
|
| - [&](float a, float b) { return kBandMaskingFactor * (a + b); });
|
| -
|
| - // Add masker from the same band.
|
| - std::transform(same_band_masker.begin(), same_band_masker.end(),
|
| - masker.begin(), masker.begin(), std::plus<float>());
|
| - }
|
| -
|
| - // Compute new gain as:
|
| - // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
|
| - // kTimeMaskingFactor
|
| - // * kEchoMaskingMargin / residual_echo_power(t,f).
|
| - // or
|
| - // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
|
| - // nearend_power(t-1)) * kTimeMaskingFactor +
|
| - // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
|
| - // (G2(t,f-1)*nearend_power(t, f-1) +
|
| - // G2(t,f+1)*nearend_power(t, f+1)) *
|
| - // kTimeMaskingFactor) * kBandMaskingFactor)
|
| - // * kEchoMaskingMargin / residual_echo_power(t,f).
|
| - std::transform(
|
| - masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
|
| - gain_squared->begin() + 1, [&](float a, float b) {
|
| - return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
|
| - });
|
| -
|
| - // Limit gain for bands with strong nearend.
|
| - std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
|
| - strong_nearend.begin(), gain_squared->begin() + 1,
|
| - [](float a, bool b) { return b ? 1.f : a; });
|
| -
|
| - // Limit the allowed gain update over time.
|
| - std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
|
| - previous_gain_squared->begin(), gain_squared->begin() + 1,
|
| - [](float a, float b) {
|
| - return b < 0.001f ? std::min(a, 0.001f)
|
| - : std::min(a, b * 2.f);
|
| - });
|
| -
|
| - // Process the gains to avoid artefacts caused by gain realization in the
|
| - // filterbank and impact of external pre-processing of the signal.
|
| - GainPostProcessing(gain_squared);
|
| - }
|
| -
|
| - std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
|
| - previous_gain_squared->begin());
|
| -
|
| - std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
|
| - nearend_power.begin() + 1, previous_masker->begin(),
|
| - std::multiplies<float>());
|
| - std::transform(previous_masker->begin(), previous_masker->end(),
|
| - comfort_noise_power.begin() + 1, previous_masker->begin(),
|
| - std::plus<float>());
|
| -
|
| - for (size_t k = 0; k < kFftLengthBy2; k += 4) {
|
| - __m128 g = _mm_loadu_ps(&(*gain_squared)[k]);
|
| - g = _mm_sqrt_ps(g);
|
| - _mm_storeu_ps(&(*gain)[k], g);
|
| - }
|
| -
|
| - (*gain)[kFftLengthBy2] = sqrtf((*gain)[kFftLengthBy2]);
|
| -}
|
| -
|
| -#endif
|
| -
|
| void ComputeGains(
|
| + Aec3Optimization optimization,
|
| const std::array<float, kFftLengthBy2Plus1>& nearend_power,
|
| const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
|
| const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
|
| @@ -182,6 +65,7 @@ void ComputeGains(
|
| std::array<bool, kFftLengthBy2Minus1> strong_nearend;
|
| std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
|
| std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
|
| + aec3::VectorMath math(optimization);
|
|
|
| // Precompute 1/residual_echo_power.
|
| std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
|
| @@ -205,22 +89,16 @@ void ComputeGains(
|
| std::copy(same_band_masker.begin(), same_band_masker.end(),
|
| masker.begin());
|
| } else {
|
| - // Add masker for neightboring bands.
|
| - std::transform(nearend_power.begin(), nearend_power.end(),
|
| - gain_squared->begin(), neighboring_bands_masker.begin(),
|
| - std::multiplies<float>());
|
| - std::transform(neighboring_bands_masker.begin(),
|
| - neighboring_bands_masker.end(),
|
| - comfort_noise_power.begin(),
|
| - neighboring_bands_masker.begin(), std::plus<float>());
|
| + // Add masker for neighboring bands.
|
| + math.Multiply(nearend_power, *gain_squared, neighboring_bands_masker);
|
| + math.Accumulate(comfort_noise_power, neighboring_bands_masker);
|
| std::transform(
|
| neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
|
| neighboring_bands_masker.begin() + 2, masker.begin(),
|
| [&](float a, float b) { return kBandMaskingFactor * (a + b); });
|
|
|
| // Add masker from the same band.
|
| - std::transform(same_band_masker.begin(), same_band_masker.end(),
|
| - masker.begin(), masker.begin(), std::plus<float>());
|
| + math.Accumulate(same_band_masker, masker);
|
| }
|
|
|
| // Compute new gain as:
|
| @@ -262,18 +140,17 @@ void ComputeGains(
|
| std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
|
| previous_gain_squared->begin());
|
|
|
| - std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
|
| - nearend_power.begin() + 1, previous_masker->begin(),
|
| - std::multiplies<float>());
|
| - std::transform(previous_masker->begin(), previous_masker->end(),
|
| - comfort_noise_power.begin() + 1, previous_masker->begin(),
|
| - std::plus<float>());
|
| -
|
| - std::transform(gain_squared->begin(), gain_squared->end(), gain->begin(),
|
| - [](float a) { return sqrtf(a); });
|
| + math.Multiply(
|
| + rtc::ArrayView<const float>(&(*gain_squared)[1], previous_masker->size()),
|
| + rtc::ArrayView<const float>(&nearend_power[1], previous_masker->size()),
|
| + *previous_masker);
|
| + math.Accumulate(rtc::ArrayView<const float>(&comfort_noise_power[1],
|
| + previous_masker->size()),
|
| + *previous_masker);
|
| + math.Sqrt(*gain);
|
| }
|
|
|
| -} // namespace aec3
|
| +} // namespace
|
|
|
| // Computes an upper bound on the gain to apply for high frequencies.
|
| float HighFrequencyGainBound(bool saturated_echo,
|
| @@ -342,19 +219,9 @@ void SuppressionGain::GetGain(
|
|
|
| // Choose margin to use.
|
| const float margin = saturated_echo ? 0.001f : 0.01f;
|
| - switch (optimization_) {
|
| -#if defined(WEBRTC_ARCH_X86_FAMILY)
|
| - case Aec3Optimization::kSse2:
|
| - aec3::ComputeGains_SSE2(
|
| - nearend_power, residual_echo_power, comfort_noise_power, margin,
|
| - &previous_gain_squared_, &previous_masker_, low_band_gain);
|
| - break;
|
| -#endif
|
| - default:
|
| - aec3::ComputeGains(nearend_power, residual_echo_power,
|
| - comfort_noise_power, margin, &previous_gain_squared_,
|
| - &previous_masker_, low_band_gain);
|
| - }
|
| + ComputeGains(optimization_, nearend_power, residual_echo_power,
|
| + comfort_noise_power, margin, &previous_gain_squared_,
|
| + &previous_masker_, low_band_gain);
|
|
|
| if (num_capture_bands > 1) {
|
| // Compute the gain for upper frequencies.
|
|
|