Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(434)

Side by Side Diff: webrtc/modules/audio_processing/aec3/suppression_gain.cc

Issue 2813823002: Adding new functionality for SIMD optimizations in AEC3 (Closed)
Patch Set: Fixed build error on windows Created 3 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/modules/audio_processing/aec3/suppression_gain.h" 11 #include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
12 12
13 #include "webrtc/typedefs.h" 13 #include "webrtc/typedefs.h"
14 #if defined(WEBRTC_ARCH_X86_FAMILY) 14 #if defined(WEBRTC_ARCH_X86_FAMILY)
15 #include <emmintrin.h> 15 #include <emmintrin.h>
16 #endif 16 #endif
17 #include <math.h> 17 #include <math.h>
18 #include <algorithm> 18 #include <algorithm>
19 #include <functional> 19 #include <functional>
20 #include <numeric> 20 #include <numeric>
21 21
22 #include "webrtc/base/checks.h" 22 #include "webrtc/base/checks.h"
23 #include "webrtc/modules/audio_processing/aec3/vector_math.h"
23 24
24 namespace webrtc { 25 namespace webrtc {
25 namespace { 26 namespace {
26 27
27 void GainPostProcessing(std::array<float, kFftLengthBy2Plus1>* gain_squared) { 28 void GainPostProcessing(std::array<float, kFftLengthBy2Plus1>* gain_squared) {
28 // Limit the low frequency gains to avoid the impact of the high-pass filter 29 // Limit the low frequency gains to avoid the impact of the high-pass filter
29 // on the lower-frequency gain influencing the overall achieved gain. 30 // on the lower-frequency gain influencing the overall achieved gain.
30 (*gain_squared)[1] = std::min((*gain_squared)[1], (*gain_squared)[2]); 31 (*gain_squared)[1] = std::min((*gain_squared)[1], (*gain_squared)[2]);
31 (*gain_squared)[0] = (*gain_squared)[1]; 32 (*gain_squared)[0] = (*gain_squared)[1];
32 33
33 // Limit the high frequency gains to avoid the impact of the anti-aliasing 34 // Limit the high frequency gains to avoid the impact of the anti-aliasing
34 // filter on the upper-frequency gains influencing the overall achieved 35 // filter on the upper-frequency gains influencing the overall achieved
35 // gain. TODO(peah): Update this when new anti-aliasing filters are 36 // gain. TODO(peah): Update this when new anti-aliasing filters are
36 // implemented. 37 // implemented.
37 constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000; 38 constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000;
38 std::for_each(gain_squared->begin() + kAntiAliasingImpactLimit, 39 std::for_each(gain_squared->begin() + kAntiAliasingImpactLimit,
39 gain_squared->end() - 1, 40 gain_squared->end() - 1,
40 [gain_squared, kAntiAliasingImpactLimit](float& a) { 41 [gain_squared, kAntiAliasingImpactLimit](float& a) {
41 a = std::min(a, (*gain_squared)[kAntiAliasingImpactLimit]); 42 a = std::min(a, (*gain_squared)[kAntiAliasingImpactLimit]);
42 }); 43 });
43 (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1]; 44 (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1];
44 } 45 }
45 46
46 constexpr int kNumIterations = 2; 47 constexpr int kNumIterations = 2;
47 constexpr float kEchoMaskingMargin = 1.f / 20.f; 48 constexpr float kEchoMaskingMargin = 1.f / 20.f;
48 constexpr float kBandMaskingFactor = 1.f / 10.f; 49 constexpr float kBandMaskingFactor = 1.f / 10.f;
49 constexpr float kTimeMaskingFactor = 1.f / 10.f; 50 constexpr float kTimeMaskingFactor = 1.f / 10.f;
50 51
51 } // namespace
52
53 namespace aec3 {
54
55 #if defined(WEBRTC_ARCH_X86_FAMILY)
56
57 // Optimized SSE2 code for the gain computation.
58 // TODO(peah): Add further optimizations, in particular for the divisions. 52 // TODO(peah): Add further optimizations, in particular for the divisions.
59 void ComputeGains_SSE2( 53 void ComputeGains(
54 Aec3Optimization optimization,
60 const std::array<float, kFftLengthBy2Plus1>& nearend_power, 55 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
61 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power, 56 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
62 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power, 57 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
63 float strong_nearend_margin,
64 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
65 std::array<float, kFftLengthBy2Minus1>* previous_masker,
66 std::array<float, kFftLengthBy2Plus1>* gain) {
67 std::array<float, kFftLengthBy2Minus1> masker;
68 std::array<float, kFftLengthBy2Minus1> same_band_masker;
69 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
70 std::array<bool, kFftLengthBy2Minus1> strong_nearend;
71 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
72 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
73
74 // Precompute 1/residual_echo_power.
75 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
76 one_by_residual_echo_power.begin(),
77 [](float a) { return a > 0.f ? 1.f / a : -1.f; });
78
79 // Precompute indicators for bands with strong nearend.
80 std::transform(
81 residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
82 nearend_power.begin() + 1, strong_nearend.begin(),
83 [&](float a, float b) { return a <= strong_nearend_margin * b; });
84
85 // Precompute masker for the same band.
86 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
87 previous_masker->begin(), same_band_masker.begin(),
88 [&](float a, float b) { return a + kTimeMaskingFactor * b; });
89
90 for (int k = 0; k < kNumIterations; ++k) {
91 if (k == 0) {
92 // Add masker from the same band.
93 std::copy(same_band_masker.begin(), same_band_masker.end(),
94 masker.begin());
95 } else {
96 // Add masker for neighboring bands.
97 std::transform(nearend_power.begin(), nearend_power.end(),
98 gain_squared->begin(), neighboring_bands_masker.begin(),
99 std::multiplies<float>());
100 std::transform(neighboring_bands_masker.begin(),
101 neighboring_bands_masker.end(),
102 comfort_noise_power.begin(),
103 neighboring_bands_masker.begin(), std::plus<float>());
104 std::transform(
105 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
106 neighboring_bands_masker.begin() + 2, masker.begin(),
107 [&](float a, float b) { return kBandMaskingFactor * (a + b); });
108
109 // Add masker from the same band.
110 std::transform(same_band_masker.begin(), same_band_masker.end(),
111 masker.begin(), masker.begin(), std::plus<float>());
112 }
113
114 // Compute new gain as:
115 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
116 // kTimeMaskingFactor
117 // * kEchoMaskingMargin / residual_echo_power(t,f).
118 // or
119 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
120 // nearend_power(t-1)) * kTimeMaskingFactor +
121 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
122 // (G2(t,f-1)*nearend_power(t, f-1) +
123 // G2(t,f+1)*nearend_power(t, f+1)) *
124 // kTimeMaskingFactor) * kBandMaskingFactor)
125 // * kEchoMaskingMargin / residual_echo_power(t,f).
126 std::transform(
127 masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
128 gain_squared->begin() + 1, [&](float a, float b) {
129 return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
130 });
131
132 // Limit gain for bands with strong nearend.
133 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
134 strong_nearend.begin(), gain_squared->begin() + 1,
135 [](float a, bool b) { return b ? 1.f : a; });
136
137 // Limit the allowed gain update over time.
138 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
139 previous_gain_squared->begin(), gain_squared->begin() + 1,
140 [](float a, float b) {
141 return b < 0.001f ? std::min(a, 0.001f)
142 : std::min(a, b * 2.f);
143 });
144
145 // Process the gains to avoid artefacts caused by gain realization in the
146 // filterbank and impact of external pre-processing of the signal.
147 GainPostProcessing(gain_squared);
148 }
149
150 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
151 previous_gain_squared->begin());
152
153 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
154 nearend_power.begin() + 1, previous_masker->begin(),
155 std::multiplies<float>());
156 std::transform(previous_masker->begin(), previous_masker->end(),
157 comfort_noise_power.begin() + 1, previous_masker->begin(),
158 std::plus<float>());
159
160 for (size_t k = 0; k < kFftLengthBy2; k += 4) {
161 __m128 g = _mm_loadu_ps(&(*gain_squared)[k]);
162 g = _mm_sqrt_ps(g);
163 _mm_storeu_ps(&(*gain)[k], g);
164 }
165
166 (*gain)[kFftLengthBy2] = sqrtf((*gain)[kFftLengthBy2]);
167 }
168
169 #endif
170
171 void ComputeGains(
172 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
173 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
174 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
175 float strong_nearend_margin, 58 float strong_nearend_margin,
176 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared, 59 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
177 std::array<float, kFftLengthBy2Minus1>* previous_masker, 60 std::array<float, kFftLengthBy2Minus1>* previous_masker,
178 std::array<float, kFftLengthBy2Plus1>* gain) { 61 std::array<float, kFftLengthBy2Plus1>* gain) {
179 std::array<float, kFftLengthBy2Minus1> masker; 62 std::array<float, kFftLengthBy2Minus1> masker;
180 std::array<float, kFftLengthBy2Minus1> same_band_masker; 63 std::array<float, kFftLengthBy2Minus1> same_band_masker;
181 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power; 64 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
182 std::array<bool, kFftLengthBy2Minus1> strong_nearend; 65 std::array<bool, kFftLengthBy2Minus1> strong_nearend;
183 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker; 66 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
184 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain; 67 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
68 aec3::VectorMath math(optimization);
185 69
186 // Precompute 1/residual_echo_power. 70 // Precompute 1/residual_echo_power.
187 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1, 71 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
188 one_by_residual_echo_power.begin(), 72 one_by_residual_echo_power.begin(),
189 [](float a) { return a > 0.f ? 1.f / a : -1.f; }); 73 [](float a) { return a > 0.f ? 1.f / a : -1.f; });
190 74
191 // Precompute indicators for bands with strong nearend. 75 // Precompute indicators for bands with strong nearend.
192 std::transform( 76 std::transform(
193 residual_echo_power.begin() + 1, residual_echo_power.end() - 1, 77 residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
194 nearend_power.begin() + 1, strong_nearend.begin(), 78 nearend_power.begin() + 1, strong_nearend.begin(),
195 [&](float a, float b) { return a <= strong_nearend_margin * b; }); 79 [&](float a, float b) { return a <= strong_nearend_margin * b; });
196 80
197 // Precompute masker for the same band. 81 // Precompute masker for the same band.
198 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1, 82 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
199 previous_masker->begin(), same_band_masker.begin(), 83 previous_masker->begin(), same_band_masker.begin(),
200 [&](float a, float b) { return a + kTimeMaskingFactor * b; }); 84 [&](float a, float b) { return a + kTimeMaskingFactor * b; });
201 85
202 for (int k = 0; k < kNumIterations; ++k) { 86 for (int k = 0; k < kNumIterations; ++k) {
203 if (k == 0) { 87 if (k == 0) {
204 // Add masker from the same band. 88 // Add masker from the same band.
205 std::copy(same_band_masker.begin(), same_band_masker.end(), 89 std::copy(same_band_masker.begin(), same_band_masker.end(),
206 masker.begin()); 90 masker.begin());
207 } else { 91 } else {
208 // Add masker for neightboring bands. 92 // Add masker for neighboring bands.
209 std::transform(nearend_power.begin(), nearend_power.end(), 93 math.Multiply(nearend_power, *gain_squared, neighboring_bands_masker);
210 gain_squared->begin(), neighboring_bands_masker.begin(), 94 math.Accumulate(comfort_noise_power, neighboring_bands_masker);
211 std::multiplies<float>());
212 std::transform(neighboring_bands_masker.begin(),
213 neighboring_bands_masker.end(),
214 comfort_noise_power.begin(),
215 neighboring_bands_masker.begin(), std::plus<float>());
216 std::transform( 95 std::transform(
217 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2, 96 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
218 neighboring_bands_masker.begin() + 2, masker.begin(), 97 neighboring_bands_masker.begin() + 2, masker.begin(),
219 [&](float a, float b) { return kBandMaskingFactor * (a + b); }); 98 [&](float a, float b) { return kBandMaskingFactor * (a + b); });
220 99
221 // Add masker from the same band. 100 // Add masker from the same band.
222 std::transform(same_band_masker.begin(), same_band_masker.end(), 101 math.Accumulate(same_band_masker, masker);
223 masker.begin(), masker.begin(), std::plus<float>());
224 } 102 }
225 103
226 // Compute new gain as: 104 // Compute new gain as:
227 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) * 105 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
228 // kTimeMaskingFactor 106 // kTimeMaskingFactor
229 // * kEchoMaskingMargin / residual_echo_power(t,f). 107 // * kEchoMaskingMargin / residual_echo_power(t,f).
230 // or 108 // or
231 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) * 109 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
232 // nearend_power(t-1)) * kTimeMaskingFactor + 110 // nearend_power(t-1)) * kTimeMaskingFactor +
233 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) + 111 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
(...skipping 21 matching lines...) Expand all
255 }); 133 });
256 134
257 // Process the gains to avoid artefacts caused by gain realization in the 135 // Process the gains to avoid artefacts caused by gain realization in the
258 // filterbank and impact of external pre-processing of the signal. 136 // filterbank and impact of external pre-processing of the signal.
259 GainPostProcessing(gain_squared); 137 GainPostProcessing(gain_squared);
260 } 138 }
261 139
262 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1, 140 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
263 previous_gain_squared->begin()); 141 previous_gain_squared->begin());
264 142
265 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, 143 math.Multiply(
266 nearend_power.begin() + 1, previous_masker->begin(), 144 rtc::ArrayView<const float>(&(*gain_squared)[1], previous_masker->size()),
267 std::multiplies<float>()); 145 rtc::ArrayView<const float>(&nearend_power[1], previous_masker->size()),
268 std::transform(previous_masker->begin(), previous_masker->end(), 146 *previous_masker);
269 comfort_noise_power.begin() + 1, previous_masker->begin(), 147 math.Accumulate(rtc::ArrayView<const float>(&comfort_noise_power[1],
270 std::plus<float>()); 148 previous_masker->size()),
271 149 *previous_masker);
272 std::transform(gain_squared->begin(), gain_squared->end(), gain->begin(), 150 math.Sqrt(*gain);
273 [](float a) { return sqrtf(a); });
274 } 151 }
275 152
276 } // namespace aec3 153 } // namespace
277 154
278 // Computes an upper bound on the gain to apply for high frequencies. 155 // Computes an upper bound on the gain to apply for high frequencies.
279 float HighFrequencyGainBound(bool saturated_echo, 156 float HighFrequencyGainBound(bool saturated_echo,
280 const std::vector<std::vector<float>>& render) { 157 const std::vector<std::vector<float>>& render) {
281 if (render.size() == 1) { 158 if (render.size() == 1) {
282 return 1.f; 159 return 1.f;
283 } 160 }
284 161
285 // Always attenuate the upper bands when there is saturated echo. 162 // Always attenuate the upper bands when there is saturated echo.
286 if (saturated_echo) { 163 if (saturated_echo) {
(...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after
335 previous_gain_squared_.fill(0.f); 212 previous_gain_squared_.fill(0.f);
336 std::copy(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1, 213 std::copy(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
337 previous_masker_.begin()); 214 previous_masker_.begin());
338 low_band_gain->fill(0.f); 215 low_band_gain->fill(0.f);
339 *high_bands_gain = 0.f; 216 *high_bands_gain = 0.f;
340 return; 217 return;
341 } 218 }
342 219
343 // Choose margin to use. 220 // Choose margin to use.
344 const float margin = saturated_echo ? 0.001f : 0.01f; 221 const float margin = saturated_echo ? 0.001f : 0.01f;
345 switch (optimization_) { 222 ComputeGains(optimization_, nearend_power, residual_echo_power,
346 #if defined(WEBRTC_ARCH_X86_FAMILY) 223 comfort_noise_power, margin, &previous_gain_squared_,
347 case Aec3Optimization::kSse2: 224 &previous_masker_, low_band_gain);
348 aec3::ComputeGains_SSE2(
349 nearend_power, residual_echo_power, comfort_noise_power, margin,
350 &previous_gain_squared_, &previous_masker_, low_band_gain);
351 break;
352 #endif
353 default:
354 aec3::ComputeGains(nearend_power, residual_echo_power,
355 comfort_noise_power, margin, &previous_gain_squared_,
356 &previous_masker_, low_band_gain);
357 }
358 225
359 if (num_capture_bands > 1) { 226 if (num_capture_bands > 1) {
360 // Compute the gain for upper frequencies. 227 // Compute the gain for upper frequencies.
361 const float min_high_band_gain = 228 const float min_high_band_gain =
362 HighFrequencyGainBound(saturated_echo, render); 229 HighFrequencyGainBound(saturated_echo, render);
363 *high_bands_gain = 230 *high_bands_gain =
364 *std::min_element(low_band_gain->begin() + 32, low_band_gain->end()); 231 *std::min_element(low_band_gain->begin() + 32, low_band_gain->end());
365 232
366 *high_bands_gain = std::min(*high_bands_gain, min_high_band_gain); 233 *high_bands_gain = std::min(*high_bands_gain, min_high_band_gain);
367 234
368 } else { 235 } else {
369 *high_bands_gain = 1.f; 236 *high_bands_gain = 1.f;
370 } 237 }
371 } 238 }
372 239
373 } // namespace webrtc 240 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698