| Index: webrtc/base/task_queue_win.cc
|
| diff --git a/webrtc/base/task_queue_win.cc b/webrtc/base/task_queue_win.cc
|
| index bbaf7b9f44b4383feff79fd08697fea4e08c7e6b..f7332d76ed8e99a1acc235127d0c92e2e314bb96 100644
|
| --- a/webrtc/base/task_queue_win.cc
|
| +++ b/webrtc/base/task_queue_win.cc
|
| @@ -14,10 +14,12 @@
|
| #include <string.h>
|
|
|
| #include <algorithm>
|
| +#include <queue>
|
|
|
| -#include "webrtc/base/arraysize.h"
|
| #include "webrtc/base/checks.h"
|
| #include "webrtc/base/logging.h"
|
| +#include "webrtc/base/safe_conversions.h"
|
| +#include "webrtc/base/timeutils.h"
|
|
|
| namespace rtc {
|
| namespace {
|
| @@ -67,112 +69,119 @@ ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) {
|
| return kNormalPriority;
|
| }
|
|
|
| -#if defined(_WIN64)
|
| -DWORD GetTick() {
|
| +int64_t GetTick() {
|
| static const UINT kPeriod = 1;
|
| bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR);
|
| - DWORD ret = timeGetTime();
|
| + int64_t ret = TimeMillis();
|
| if (high_res)
|
| timeEndPeriod(kPeriod);
|
| return ret;
|
| }
|
| -#endif
|
| -} // namespace
|
|
|
| -class TaskQueue::MultimediaTimer {
|
| +class DelayedTaskInfo {
|
| public:
|
| - // kMaxTimers defines the limit of how many MultimediaTimer instances should
|
| - // be created.
|
| - // Background: The maximum number of supported handles for Wait functions, is
|
| - // MAXIMUM_WAIT_OBJECTS - 1 (63).
|
| - // There are some ways to work around the limitation but as it turns out, the
|
| - // limit of concurrently active multimedia timers per process, is much lower,
|
| - // or 16. So there isn't much value in going to the lenghts required to
|
| - // overcome the Wait limitations.
|
| - // kMaxTimers is larger than 16 though since it is possible that 'complete' or
|
| - // signaled timers that haven't been handled, are counted as part of
|
| - // kMaxTimers and thus a multimedia timer can actually be queued even though
|
| - // as far as we're concerned, there are more than 16 that are pending.
|
| - static const int kMaxTimers = MAXIMUM_WAIT_OBJECTS - 1;
|
| -
|
| - // Controls how many MultimediaTimer instances a queue can hold before
|
| - // attempting to garbage collect (GC) timers that aren't in use.
|
| - static const int kInstanceThresholdGC = 8;
|
| + // Default ctor needed to support priority_queue::pop().
|
| + DelayedTaskInfo() {}
|
| + DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task)
|
| + : due_time_(GetTick() + milliseconds), task_(std::move(task)) {}
|
| + DelayedTaskInfo(DelayedTaskInfo&&) = default;
|
| +
|
| + // Implement for priority_queue.
|
| + bool operator>(const DelayedTaskInfo& other) const {
|
| + return due_time_ > other.due_time_;
|
| + }
|
|
|
| - MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {}
|
| + // Required by priority_queue::pop().
|
| + DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default;
|
|
|
| - MultimediaTimer(MultimediaTimer&& timer)
|
| - : event_(timer.event_),
|
| - timer_id_(timer.timer_id_),
|
| - task_(std::move(timer.task_)) {
|
| - RTC_DCHECK(event_);
|
| - timer.event_ = nullptr;
|
| - timer.timer_id_ = 0;
|
| + // See below for why this method is const.
|
| + void Run() const {
|
| + RTC_DCHECK(due_time_);
|
| + task_->Run() ? task_.reset() : static_cast<void>(task_.release());
|
| }
|
|
|
| - ~MultimediaTimer() { Close(); }
|
| -
|
| - // Implementing this operator is required because of the way
|
| - // some stl algorithms work, such as std::rotate().
|
| - MultimediaTimer& operator=(MultimediaTimer&& timer) {
|
| - if (this != &timer) {
|
| - Close();
|
| - event_ = timer.event_;
|
| - timer.event_ = nullptr;
|
| - task_ = std::move(timer.task_);
|
| - timer_id_ = timer.timer_id_;
|
| - timer.timer_id_ = 0;
|
| - }
|
| - return *this;
|
| + int64_t due_time() const { return due_time_; }
|
| +
|
| + private:
|
| + int64_t due_time_ = 0; // Absolute timestamp in milliseconds.
|
| +
|
| + // |task| needs to be mutable because std::priority_queue::top() returns
|
| + // a const reference and a key in an ordered queue must not be changed.
|
| + // There are two basic workarounds, one using const_cast, which would also
|
| + // make the key (|due_time|), non-const and the other is to make the non-key
|
| + // (|task|), mutable.
|
| + // Because of this, the |task| variable is made private and can only be
|
| + // mutated by calling the |Run()| method.
|
| + mutable std::unique_ptr<QueuedTask> task_;
|
| +};
|
| +
|
| +class MultimediaTimer {
|
| + public:
|
| + MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {}
|
| +
|
| + ~MultimediaTimer() {
|
| + Cancel();
|
| + ::CloseHandle(event_);
|
| }
|
|
|
| - bool StartOneShotTimer(std::unique_ptr<QueuedTask> task, UINT delay_ms) {
|
| + bool StartOneShotTimer(UINT delay_ms) {
|
| RTC_DCHECK_EQ(0, timer_id_);
|
| RTC_DCHECK(event_ != nullptr);
|
| - RTC_DCHECK(!task_.get());
|
| - RTC_DCHECK(task.get());
|
| - task_ = std::move(task);
|
| timer_id_ =
|
| ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
|
| TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
|
| return timer_id_ != 0;
|
| }
|
|
|
| - std::unique_ptr<QueuedTask> Cancel() {
|
| + void Cancel() {
|
| if (timer_id_) {
|
| ::timeKillEvent(timer_id_);
|
| timer_id_ = 0;
|
| }
|
| - return std::move(task_);
|
| - }
|
| -
|
| - void OnEventSignaled() {
|
| - RTC_DCHECK_NE(0, timer_id_);
|
| - timer_id_ = 0;
|
| - task_->Run() ? task_.reset() : static_cast<void>(task_.release());
|
| }
|
|
|
| - HANDLE event() const { return event_; }
|
| -
|
| - bool is_active() const { return timer_id_ != 0; }
|
| + HANDLE* event_for_wait() { return &event_; }
|
|
|
| private:
|
| - void Close() {
|
| - Cancel();
|
| -
|
| - if (event_) {
|
| - ::CloseHandle(event_);
|
| - event_ = nullptr;
|
| - }
|
| - }
|
| -
|
| HANDLE event_ = nullptr;
|
| MMRESULT timer_id_ = 0;
|
| - std::unique_ptr<QueuedTask> task_;
|
|
|
| RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
|
| };
|
|
|
| +} // namespace
|
| +
|
| +class TaskQueue::ThreadState {
|
| + public:
|
| + ThreadState() {}
|
| + ~ThreadState() {}
|
| +
|
| + void RunThreadMain();
|
| +
|
| + private:
|
| + bool ProcessQueuedMessages();
|
| + void RunDueTasks();
|
| + void ScheduleNextTimer();
|
| + void CancelTimers();
|
| +
|
| + // Since priority_queue<> by defult orders items in terms of
|
| + // largest->smallest, using std::less<>, and we want smallest->largest,
|
| + // we would like to use std::greater<> here. Alas it's only available in
|
| + // C++14 and later, so we roll our own compare template that that relies on
|
| + // operator<().
|
| + template <typename T>
|
| + struct greater {
|
| + bool operator()(const T& l, const T& r) { return l > r; }
|
| + };
|
| +
|
| + MultimediaTimer timer_;
|
| + std::priority_queue<DelayedTaskInfo,
|
| + std::vector<DelayedTaskInfo>,
|
| + greater<DelayedTaskInfo>>
|
| + timer_tasks_;
|
| + UINT_PTR timer_id_ = 0;
|
| +};
|
| +
|
| TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/)
|
| : thread_(&TaskQueue::ThreadMain,
|
| this,
|
| @@ -220,18 +229,19 @@ void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
|
|
|
| void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
| uint32_t milliseconds) {
|
| - WPARAM wparam;
|
| -#if defined(_WIN64)
|
| - // GetTickCount() returns a fairly coarse tick count (resolution or about 8ms)
|
| - // so this compensation isn't that accurate, but since we have unused 32 bits
|
| - // on Win64, we might as well use them.
|
| - wparam = (static_cast<WPARAM>(GetTick()) << 32) | milliseconds;
|
| -#else
|
| - wparam = milliseconds;
|
| -#endif
|
| - if (::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam,
|
| - reinterpret_cast<LPARAM>(task.get()))) {
|
| - task.release();
|
| + if (!milliseconds) {
|
| + PostTask(std::move(task));
|
| + return;
|
| + }
|
| +
|
| + // TODO(tommi): Avoid this allocation. It is currently here since
|
| + // the timestamp stored in the task info object, is a 64bit timestamp
|
| + // and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the
|
| + // task pointer and timestamp as LPARAM and WPARAM.
|
| + auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task));
|
| + if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0,
|
| + reinterpret_cast<LPARAM>(task_info))) {
|
| + delete task_info;
|
| }
|
| }
|
|
|
| @@ -260,65 +270,35 @@ void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
|
|
| // static
|
| void TaskQueue::ThreadMain(void* context) {
|
| - HANDLE timer_handles[MultimediaTimer::kMaxTimers];
|
| - // Active multimedia timers.
|
| - std::vector<MultimediaTimer> mm_timers;
|
| - // Tasks that have been queued by using SetTimer/WM_TIMER.
|
| - DelayedTasks delayed_tasks;
|
| + ThreadState state;
|
| + state.RunThreadMain();
|
| +}
|
|
|
| +void TaskQueue::ThreadState::RunThreadMain() {
|
| while (true) {
|
| - RTC_DCHECK(mm_timers.size() <= arraysize(timer_handles));
|
| - DWORD count = 0;
|
| - for (const auto& t : mm_timers) {
|
| - if (!t.is_active())
|
| - break;
|
| - timer_handles[count++] = t.event();
|
| - }
|
| // Make sure we do an alertable wait as that's required to allow APCs to run
|
| // (e.g. required for InitializeQueueThread and stopping the thread in
|
| // PlatformThread).
|
| - DWORD result = ::MsgWaitForMultipleObjectsEx(count, timer_handles, INFINITE,
|
| - QS_ALLEVENTS, MWMO_ALERTABLE);
|
| + DWORD result = ::MsgWaitForMultipleObjectsEx(
|
| + 1, timer_.event_for_wait(), INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE);
|
| RTC_CHECK_NE(WAIT_FAILED, result);
|
| - // If we're not waiting for any timers, then count will be equal to
|
| - // WAIT_OBJECT_0. If we're waiting for timers, then |count| represents
|
| - // "One more than the number of timers", which means that there's a
|
| - // message in the queue that needs to be handled.
|
| - // If |result| is less than |count|, then its value will be the index of the
|
| - // timer that has been signaled.
|
| - if (result == (WAIT_OBJECT_0 + count)) {
|
| - if (!ProcessQueuedMessages(&delayed_tasks, &mm_timers))
|
| + if (result == (WAIT_OBJECT_0 + 1)) {
|
| + // There are messages in the message queue that need to be handled.
|
| + if (!ProcessQueuedMessages())
|
| break;
|
| - } else if (result < (WAIT_OBJECT_0 + count)) {
|
| - mm_timers[result].OnEventSignaled();
|
| - RTC_DCHECK(!mm_timers[result].is_active());
|
| - // Reuse timer events by moving inactive timers to the back of the vector.
|
| - // When new delayed tasks are queued, they'll get reused.
|
| - if (mm_timers.size() > 1) {
|
| - auto it = mm_timers.begin() + result;
|
| - std::rotate(it, it + 1, mm_timers.end());
|
| - }
|
| -
|
| - // Collect some garbage.
|
| - if (mm_timers.size() > MultimediaTimer::kInstanceThresholdGC) {
|
| - const auto inactive = std::find_if(
|
| - mm_timers.begin(), mm_timers.end(),
|
| - [](const MultimediaTimer& t) { return !t.is_active(); });
|
| - if (inactive != mm_timers.end()) {
|
| - // Since inactive timers are always moved to the back, we can
|
| - // safely delete all timers following the first inactive one.
|
| - mm_timers.erase(inactive, mm_timers.end());
|
| - }
|
| - }
|
| + } else if (result == WAIT_OBJECT_0) {
|
| + // The multimedia timer was signaled.
|
| + timer_.Cancel();
|
| + RTC_DCHECK(!timer_tasks_.empty());
|
| + RunDueTasks();
|
| + ScheduleNextTimer();
|
| } else {
|
| RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result);
|
| }
|
| }
|
| }
|
|
|
| -// static
|
| -bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks,
|
| - std::vector<MultimediaTimer>* timers) {
|
| +bool TaskQueue::ThreadState::ProcessQueuedMessages() {
|
| MSG msg = {};
|
| while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
|
| msg.message != WM_QUIT) {
|
| @@ -331,53 +311,24 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks,
|
| break;
|
| }
|
| case WM_QUEUE_DELAYED_TASK: {
|
| - std::unique_ptr<QueuedTask> task(
|
| - reinterpret_cast<QueuedTask*>(msg.lParam));
|
| - uint32_t milliseconds = msg.wParam & 0xFFFFFFFF;
|
| -#if defined(_WIN64)
|
| - // Subtract the time it took to queue the timer.
|
| - const DWORD now = GetTick();
|
| - DWORD post_time = now - (msg.wParam >> 32);
|
| - milliseconds =
|
| - post_time > milliseconds ? 0 : milliseconds - post_time;
|
| -#endif
|
| - bool timer_queued = false;
|
| - if (timers->size() < MultimediaTimer::kMaxTimers) {
|
| - MultimediaTimer* timer = nullptr;
|
| - auto available = std::find_if(
|
| - timers->begin(), timers->end(),
|
| - [](const MultimediaTimer& t) { return !t.is_active(); });
|
| - if (available != timers->end()) {
|
| - timer = &(*available);
|
| - } else {
|
| - timers->emplace_back();
|
| - timer = &timers->back();
|
| - }
|
| -
|
| - timer_queued =
|
| - timer->StartOneShotTimer(std::move(task), milliseconds);
|
| - if (!timer_queued) {
|
| - // No more multimedia timers can be queued.
|
| - // Detach the task and fall back on SetTimer.
|
| - task = timer->Cancel();
|
| - }
|
| - }
|
| -
|
| - // When we fail to use multimedia timers, we fall back on the more
|
| - // coarse SetTimer/WM_TIMER approach.
|
| - if (!timer_queued) {
|
| - UINT_PTR timer_id = ::SetTimer(nullptr, 0, milliseconds, nullptr);
|
| - delayed_tasks->insert(std::make_pair(timer_id, task.release()));
|
| + std::unique_ptr<DelayedTaskInfo> info(
|
| + reinterpret_cast<DelayedTaskInfo*>(msg.lParam));
|
| + bool need_to_schedule_timers =
|
| + timer_tasks_.empty() ||
|
| + timer_tasks_.top().due_time() > info->due_time();
|
| + timer_tasks_.emplace(std::move(*info.get()));
|
| + if (need_to_schedule_timers) {
|
| + CancelTimers();
|
| + ScheduleNextTimer();
|
| }
|
| break;
|
| }
|
| case WM_TIMER: {
|
| + RTC_DCHECK_EQ(timer_id_, msg.wParam);
|
| ::KillTimer(nullptr, msg.wParam);
|
| - auto found = delayed_tasks->find(msg.wParam);
|
| - RTC_DCHECK(found != delayed_tasks->end());
|
| - if (!found->second->Run())
|
| - found->second.release();
|
| - delayed_tasks->erase(found);
|
| + timer_id_ = 0;
|
| + RunDueTasks();
|
| + ScheduleNextTimer();
|
| break;
|
| }
|
| default:
|
| @@ -392,4 +343,36 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks,
|
| return msg.message != WM_QUIT;
|
| }
|
|
|
| +void TaskQueue::ThreadState::RunDueTasks() {
|
| + RTC_DCHECK(!timer_tasks_.empty());
|
| + auto now = GetTick();
|
| + do {
|
| + const auto& top = timer_tasks_.top();
|
| + if (top.due_time() > now)
|
| + break;
|
| + top.Run();
|
| + timer_tasks_.pop();
|
| + } while (!timer_tasks_.empty());
|
| +}
|
| +
|
| +void TaskQueue::ThreadState::ScheduleNextTimer() {
|
| + RTC_DCHECK_EQ(timer_id_, 0);
|
| + if (timer_tasks_.empty())
|
| + return;
|
| +
|
| + const auto& next_task = timer_tasks_.top();
|
| + int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick());
|
| + uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms);
|
| + if (!timer_.StartOneShotTimer(milliseconds))
|
| + timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr);
|
| +}
|
| +
|
| +void TaskQueue::ThreadState::CancelTimers() {
|
| + timer_.Cancel();
|
| + if (timer_id_) {
|
| + ::KillTimer(nullptr, timer_id_);
|
| + timer_id_ = 0;
|
| + }
|
| +}
|
| +
|
| } // namespace rtc
|
|
|