Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(179)

Side by Side Diff: webrtc/base/task_queue_win.cc

Issue 2733723002: Refactor Windows TaskQueue code to only need a single high res timer. (Closed)
Patch Set: use greater<> and not greater_or_equal Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « webrtc/base/task_queue_unittest.cc ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. 2 * Copyright 2016 The WebRTC Project Authors. All rights reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/base/task_queue.h" 11 #include "webrtc/base/task_queue.h"
12 12
13 #include <mmsystem.h> 13 #include <mmsystem.h>
14 #include <string.h> 14 #include <string.h>
15 15
16 #include <algorithm> 16 #include <algorithm>
17 #include <queue>
17 18
18 #include "webrtc/base/arraysize.h"
19 #include "webrtc/base/checks.h" 19 #include "webrtc/base/checks.h"
20 #include "webrtc/base/logging.h" 20 #include "webrtc/base/logging.h"
21 #include "webrtc/base/safe_conversions.h"
22 #include "webrtc/base/timeutils.h"
21 23
22 namespace rtc { 24 namespace rtc {
23 namespace { 25 namespace {
24 #define WM_RUN_TASK WM_USER + 1 26 #define WM_RUN_TASK WM_USER + 1
25 #define WM_QUEUE_DELAYED_TASK WM_USER + 2 27 #define WM_QUEUE_DELAYED_TASK WM_USER + 2
26 28
27 using Priority = TaskQueue::Priority; 29 using Priority = TaskQueue::Priority;
28 30
29 DWORD g_queue_ptr_tls = 0; 31 DWORD g_queue_ptr_tls = 0;
30 32
(...skipping 29 matching lines...) Expand all
60 return kLowPriority; 62 return kLowPriority;
61 case Priority::NORMAL: 63 case Priority::NORMAL:
62 return kNormalPriority; 64 return kNormalPriority;
63 default: 65 default:
64 RTC_NOTREACHED(); 66 RTC_NOTREACHED();
65 break; 67 break;
66 } 68 }
67 return kNormalPriority; 69 return kNormalPriority;
68 } 70 }
69 71
70 #if defined(_WIN64) 72 int64_t GetTick() {
71 DWORD GetTick() {
72 static const UINT kPeriod = 1; 73 static const UINT kPeriod = 1;
73 bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR); 74 bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR);
74 DWORD ret = timeGetTime(); 75 int64_t ret = TimeMillis();
75 if (high_res) 76 if (high_res)
76 timeEndPeriod(kPeriod); 77 timeEndPeriod(kPeriod);
77 return ret; 78 return ret;
78 } 79 }
79 #endif
80 } // namespace
81 80
82 class TaskQueue::MultimediaTimer { 81 class DelayedTaskInfo {
83 public: 82 public:
84 // kMaxTimers defines the limit of how many MultimediaTimer instances should 83 // Default ctor needed to support priority_queue::pop().
85 // be created. 84 DelayedTaskInfo() {}
86 // Background: The maximum number of supported handles for Wait functions, is 85 DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task)
87 // MAXIMUM_WAIT_OBJECTS - 1 (63). 86 : due_time_(GetTick() + milliseconds), task_(std::move(task)) {}
88 // There are some ways to work around the limitation but as it turns out, the 87 DelayedTaskInfo(DelayedTaskInfo&&) = default;
89 // limit of concurrently active multimedia timers per process, is much lower,
90 // or 16. So there isn't much value in going to the lenghts required to
91 // overcome the Wait limitations.
92 // kMaxTimers is larger than 16 though since it is possible that 'complete' or
93 // signaled timers that haven't been handled, are counted as part of
94 // kMaxTimers and thus a multimedia timer can actually be queued even though
95 // as far as we're concerned, there are more than 16 that are pending.
96 static const int kMaxTimers = MAXIMUM_WAIT_OBJECTS - 1;
97 88
98 // Controls how many MultimediaTimer instances a queue can hold before 89 // Implement for priority_queue.
99 // attempting to garbage collect (GC) timers that aren't in use. 90 bool operator>(const DelayedTaskInfo& other) const {
100 static const int kInstanceThresholdGC = 8; 91 return due_time_ > other.due_time_;
92 }
101 93
94 // Required by priority_queue::pop().
95 DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default;
96
97 // See below for why this method is const.
98 void Run() const {
99 RTC_DCHECK(due_time_);
100 task_->Run() ? task_.reset() : static_cast<void>(task_.release());
101 }
102
103 int64_t due_time() const { return due_time_; }
104
105 private:
106 int64_t due_time_ = 0; // Absolute timestamp in milliseconds.
107
108 // |task| needs to be mutable because std::priority_queue::top() returns
109 // a const reference and a key in an ordered queue must not be changed.
110 // There are two basic workarounds, one using const_cast, which would also
111 // make the key (|due_time|), non-const and the other is to make the non-key
112 // (|task|), mutable.
113 // Because of this, the |task| variable is made private and can only be
114 // mutated by calling the |Run()| method.
115 mutable std::unique_ptr<QueuedTask> task_;
116 };
117
118 class MultimediaTimer {
119 public:
102 MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {} 120 MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {}
103 121
104 MultimediaTimer(MultimediaTimer&& timer) 122 ~MultimediaTimer() {
105 : event_(timer.event_), 123 Cancel();
106 timer_id_(timer.timer_id_), 124 ::CloseHandle(event_);
107 task_(std::move(timer.task_)) {
108 RTC_DCHECK(event_);
109 timer.event_ = nullptr;
110 timer.timer_id_ = 0;
111 } 125 }
112 126
113 ~MultimediaTimer() { Close(); } 127 bool StartOneShotTimer(UINT delay_ms) {
114
115 // Implementing this operator is required because of the way
116 // some stl algorithms work, such as std::rotate().
117 MultimediaTimer& operator=(MultimediaTimer&& timer) {
118 if (this != &timer) {
119 Close();
120 event_ = timer.event_;
121 timer.event_ = nullptr;
122 task_ = std::move(timer.task_);
123 timer_id_ = timer.timer_id_;
124 timer.timer_id_ = 0;
125 }
126 return *this;
127 }
128
129 bool StartOneShotTimer(std::unique_ptr<QueuedTask> task, UINT delay_ms) {
130 RTC_DCHECK_EQ(0, timer_id_); 128 RTC_DCHECK_EQ(0, timer_id_);
131 RTC_DCHECK(event_ != nullptr); 129 RTC_DCHECK(event_ != nullptr);
132 RTC_DCHECK(!task_.get());
133 RTC_DCHECK(task.get());
134 task_ = std::move(task);
135 timer_id_ = 130 timer_id_ =
136 ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0, 131 ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
137 TIME_ONESHOT | TIME_CALLBACK_EVENT_SET); 132 TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
138 return timer_id_ != 0; 133 return timer_id_ != 0;
139 } 134 }
140 135
141 std::unique_ptr<QueuedTask> Cancel() { 136 void Cancel() {
142 if (timer_id_) { 137 if (timer_id_) {
143 ::timeKillEvent(timer_id_); 138 ::timeKillEvent(timer_id_);
144 timer_id_ = 0; 139 timer_id_ = 0;
145 } 140 }
146 return std::move(task_);
147 } 141 }
148 142
149 void OnEventSignaled() { 143 HANDLE* event_for_wait() { return &event_; }
150 RTC_DCHECK_NE(0, timer_id_);
151 timer_id_ = 0;
152 task_->Run() ? task_.reset() : static_cast<void>(task_.release());
153 }
154
155 HANDLE event() const { return event_; }
156
157 bool is_active() const { return timer_id_ != 0; }
158 144
159 private: 145 private:
160 void Close() {
161 Cancel();
162
163 if (event_) {
164 ::CloseHandle(event_);
165 event_ = nullptr;
166 }
167 }
168
169 HANDLE event_ = nullptr; 146 HANDLE event_ = nullptr;
170 MMRESULT timer_id_ = 0; 147 MMRESULT timer_id_ = 0;
171 std::unique_ptr<QueuedTask> task_;
172 148
173 RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer); 149 RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
174 }; 150 };
175 151
152 } // namespace
153
154 class TaskQueue::ThreadState {
155 public:
156 ThreadState() {}
157 ~ThreadState() {}
158
159 void RunThreadMain();
160
161 private:
162 bool ProcessQueuedMessages();
163 void RunDueTasks();
164 void ScheduleNextTimer();
165 void CancelTimers();
166
167 // Since priority_queue<> by defult orders items in terms of
168 // largest->smallest, using std::less<>, and we want smallest->largest,
169 // we would like to use std::greater<> here. Alas it's only available in
170 // C++14 and later, so we roll our own compare template that that relies on
171 // operator<().
172 template <typename T>
173 struct greater {
174 bool operator()(const T& l, const T& r) { return l > r; }
175 };
176
177 MultimediaTimer timer_;
178 std::priority_queue<DelayedTaskInfo,
179 std::vector<DelayedTaskInfo>,
180 greater<DelayedTaskInfo>>
181 timer_tasks_;
182 UINT_PTR timer_id_ = 0;
183 };
184
176 TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/) 185 TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/)
177 : thread_(&TaskQueue::ThreadMain, 186 : thread_(&TaskQueue::ThreadMain,
178 this, 187 this,
179 queue_name, 188 queue_name,
180 TaskQueuePriorityToThreadPriority(priority)) { 189 TaskQueuePriorityToThreadPriority(priority)) {
181 RTC_DCHECK(queue_name); 190 RTC_DCHECK(queue_name);
182 thread_.Start(); 191 thread_.Start();
183 Event event(false, false); 192 Event event(false, false);
184 ThreadStartupData startup = {&event, this}; 193 ThreadStartupData startup = {&event, this};
185 RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread, 194 RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread,
(...skipping 27 matching lines...) Expand all
213 222
214 void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) { 223 void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
215 if (::PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0, 224 if (::PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0,
216 reinterpret_cast<LPARAM>(task.get()))) { 225 reinterpret_cast<LPARAM>(task.get()))) {
217 task.release(); 226 task.release();
218 } 227 }
219 } 228 }
220 229
221 void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task, 230 void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
222 uint32_t milliseconds) { 231 uint32_t milliseconds) {
223 WPARAM wparam; 232 if (!milliseconds) {
224 #if defined(_WIN64) 233 PostTask(std::move(task));
225 // GetTickCount() returns a fairly coarse tick count (resolution or about 8ms) 234 return;
226 // so this compensation isn't that accurate, but since we have unused 32 bits 235 }
227 // on Win64, we might as well use them. 236
228 wparam = (static_cast<WPARAM>(GetTick()) << 32) | milliseconds; 237 // TODO(tommi): Avoid this allocation. It is currently here since
229 #else 238 // the timestamp stored in the task info object, is a 64bit timestamp
230 wparam = milliseconds; 239 // and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the
231 #endif 240 // task pointer and timestamp as LPARAM and WPARAM.
232 if (::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam, 241 auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task));
233 reinterpret_cast<LPARAM>(task.get()))) { 242 if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0,
234 task.release(); 243 reinterpret_cast<LPARAM>(task_info))) {
244 delete task_info;
235 } 245 }
236 } 246 }
237 247
238 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, 248 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
239 std::unique_ptr<QueuedTask> reply, 249 std::unique_ptr<QueuedTask> reply,
240 TaskQueue* reply_queue) { 250 TaskQueue* reply_queue) {
241 QueuedTask* task_ptr = task.release(); 251 QueuedTask* task_ptr = task.release();
242 QueuedTask* reply_task_ptr = reply.release(); 252 QueuedTask* reply_task_ptr = reply.release();
243 DWORD reply_thread_id = reply_queue->thread_.GetThreadRef(); 253 DWORD reply_thread_id = reply_queue->thread_.GetThreadRef();
244 PostTask([task_ptr, reply_task_ptr, reply_thread_id]() { 254 PostTask([task_ptr, reply_task_ptr, reply_thread_id]() {
245 if (task_ptr->Run()) 255 if (task_ptr->Run())
246 delete task_ptr; 256 delete task_ptr;
247 // If the thread's message queue is full, we can't queue the task and will 257 // If the thread's message queue is full, we can't queue the task and will
248 // have to drop it (i.e. delete). 258 // have to drop it (i.e. delete).
249 if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0, 259 if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
250 reinterpret_cast<LPARAM>(reply_task_ptr))) { 260 reinterpret_cast<LPARAM>(reply_task_ptr))) {
251 delete reply_task_ptr; 261 delete reply_task_ptr;
252 } 262 }
253 }); 263 });
254 } 264 }
255 265
256 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, 266 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
257 std::unique_ptr<QueuedTask> reply) { 267 std::unique_ptr<QueuedTask> reply) {
258 return PostTaskAndReply(std::move(task), std::move(reply), Current()); 268 return PostTaskAndReply(std::move(task), std::move(reply), Current());
259 } 269 }
260 270
261 // static 271 // static
262 void TaskQueue::ThreadMain(void* context) { 272 void TaskQueue::ThreadMain(void* context) {
263 HANDLE timer_handles[MultimediaTimer::kMaxTimers]; 273 ThreadState state;
264 // Active multimedia timers. 274 state.RunThreadMain();
265 std::vector<MultimediaTimer> mm_timers; 275 }
266 // Tasks that have been queued by using SetTimer/WM_TIMER.
267 DelayedTasks delayed_tasks;
268 276
277 void TaskQueue::ThreadState::RunThreadMain() {
269 while (true) { 278 while (true) {
270 RTC_DCHECK(mm_timers.size() <= arraysize(timer_handles));
271 DWORD count = 0;
272 for (const auto& t : mm_timers) {
273 if (!t.is_active())
274 break;
275 timer_handles[count++] = t.event();
276 }
277 // Make sure we do an alertable wait as that's required to allow APCs to run 279 // Make sure we do an alertable wait as that's required to allow APCs to run
278 // (e.g. required for InitializeQueueThread and stopping the thread in 280 // (e.g. required for InitializeQueueThread and stopping the thread in
279 // PlatformThread). 281 // PlatformThread).
280 DWORD result = ::MsgWaitForMultipleObjectsEx(count, timer_handles, INFINITE, 282 DWORD result = ::MsgWaitForMultipleObjectsEx(
281 QS_ALLEVENTS, MWMO_ALERTABLE); 283 1, timer_.event_for_wait(), INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE);
282 RTC_CHECK_NE(WAIT_FAILED, result); 284 RTC_CHECK_NE(WAIT_FAILED, result);
283 // If we're not waiting for any timers, then count will be equal to 285 if (result == (WAIT_OBJECT_0 + 1)) {
284 // WAIT_OBJECT_0. If we're waiting for timers, then |count| represents 286 // There are messages in the message queue that need to be handled.
285 // "One more than the number of timers", which means that there's a 287 if (!ProcessQueuedMessages())
286 // message in the queue that needs to be handled.
287 // If |result| is less than |count|, then its value will be the index of the
288 // timer that has been signaled.
289 if (result == (WAIT_OBJECT_0 + count)) {
290 if (!ProcessQueuedMessages(&delayed_tasks, &mm_timers))
291 break; 288 break;
292 } else if (result < (WAIT_OBJECT_0 + count)) { 289 } else if (result == WAIT_OBJECT_0) {
293 mm_timers[result].OnEventSignaled(); 290 // The multimedia timer was signaled.
294 RTC_DCHECK(!mm_timers[result].is_active()); 291 timer_.Cancel();
295 // Reuse timer events by moving inactive timers to the back of the vector. 292 RTC_DCHECK(!timer_tasks_.empty());
296 // When new delayed tasks are queued, they'll get reused. 293 RunDueTasks();
297 if (mm_timers.size() > 1) { 294 ScheduleNextTimer();
298 auto it = mm_timers.begin() + result;
299 std::rotate(it, it + 1, mm_timers.end());
300 }
301
302 // Collect some garbage.
303 if (mm_timers.size() > MultimediaTimer::kInstanceThresholdGC) {
304 const auto inactive = std::find_if(
305 mm_timers.begin(), mm_timers.end(),
306 [](const MultimediaTimer& t) { return !t.is_active(); });
307 if (inactive != mm_timers.end()) {
308 // Since inactive timers are always moved to the back, we can
309 // safely delete all timers following the first inactive one.
310 mm_timers.erase(inactive, mm_timers.end());
311 }
312 }
313 } else { 295 } else {
314 RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result); 296 RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result);
315 } 297 }
316 } 298 }
317 } 299 }
318 300
319 // static 301 bool TaskQueue::ThreadState::ProcessQueuedMessages() {
320 bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks,
321 std::vector<MultimediaTimer>* timers) {
322 MSG msg = {}; 302 MSG msg = {};
323 while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) && 303 while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
324 msg.message != WM_QUIT) { 304 msg.message != WM_QUIT) {
325 if (!msg.hwnd) { 305 if (!msg.hwnd) {
326 switch (msg.message) { 306 switch (msg.message) {
327 case WM_RUN_TASK: { 307 case WM_RUN_TASK: {
328 QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam); 308 QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam);
329 if (task->Run()) 309 if (task->Run())
330 delete task; 310 delete task;
331 break; 311 break;
332 } 312 }
333 case WM_QUEUE_DELAYED_TASK: { 313 case WM_QUEUE_DELAYED_TASK: {
334 std::unique_ptr<QueuedTask> task( 314 std::unique_ptr<DelayedTaskInfo> info(
335 reinterpret_cast<QueuedTask*>(msg.lParam)); 315 reinterpret_cast<DelayedTaskInfo*>(msg.lParam));
336 uint32_t milliseconds = msg.wParam & 0xFFFFFFFF; 316 bool need_to_schedule_timers =
337 #if defined(_WIN64) 317 timer_tasks_.empty() ||
338 // Subtract the time it took to queue the timer. 318 timer_tasks_.top().due_time() > info->due_time();
339 const DWORD now = GetTick(); 319 timer_tasks_.emplace(std::move(*info.get()));
340 DWORD post_time = now - (msg.wParam >> 32); 320 if (need_to_schedule_timers) {
341 milliseconds = 321 CancelTimers();
342 post_time > milliseconds ? 0 : milliseconds - post_time; 322 ScheduleNextTimer();
343 #endif
344 bool timer_queued = false;
345 if (timers->size() < MultimediaTimer::kMaxTimers) {
346 MultimediaTimer* timer = nullptr;
347 auto available = std::find_if(
348 timers->begin(), timers->end(),
349 [](const MultimediaTimer& t) { return !t.is_active(); });
350 if (available != timers->end()) {
351 timer = &(*available);
352 } else {
353 timers->emplace_back();
354 timer = &timers->back();
355 }
356
357 timer_queued =
358 timer->StartOneShotTimer(std::move(task), milliseconds);
359 if (!timer_queued) {
360 // No more multimedia timers can be queued.
361 // Detach the task and fall back on SetTimer.
362 task = timer->Cancel();
363 }
364 }
365
366 // When we fail to use multimedia timers, we fall back on the more
367 // coarse SetTimer/WM_TIMER approach.
368 if (!timer_queued) {
369 UINT_PTR timer_id = ::SetTimer(nullptr, 0, milliseconds, nullptr);
370 delayed_tasks->insert(std::make_pair(timer_id, task.release()));
371 } 323 }
372 break; 324 break;
373 } 325 }
374 case WM_TIMER: { 326 case WM_TIMER: {
327 RTC_DCHECK_EQ(timer_id_, msg.wParam);
375 ::KillTimer(nullptr, msg.wParam); 328 ::KillTimer(nullptr, msg.wParam);
376 auto found = delayed_tasks->find(msg.wParam); 329 timer_id_ = 0;
377 RTC_DCHECK(found != delayed_tasks->end()); 330 RunDueTasks();
378 if (!found->second->Run()) 331 ScheduleNextTimer();
379 found->second.release();
380 delayed_tasks->erase(found);
381 break; 332 break;
382 } 333 }
383 default: 334 default:
384 RTC_NOTREACHED(); 335 RTC_NOTREACHED();
385 break; 336 break;
386 } 337 }
387 } else { 338 } else {
388 ::TranslateMessage(&msg); 339 ::TranslateMessage(&msg);
389 ::DispatchMessage(&msg); 340 ::DispatchMessage(&msg);
390 } 341 }
391 } 342 }
392 return msg.message != WM_QUIT; 343 return msg.message != WM_QUIT;
393 } 344 }
394 345
346 void TaskQueue::ThreadState::RunDueTasks() {
347 RTC_DCHECK(!timer_tasks_.empty());
348 auto now = GetTick();
349 do {
350 const auto& top = timer_tasks_.top();
351 if (top.due_time() > now)
352 break;
353 top.Run();
354 timer_tasks_.pop();
355 } while (!timer_tasks_.empty());
356 }
357
358 void TaskQueue::ThreadState::ScheduleNextTimer() {
359 RTC_DCHECK_EQ(timer_id_, 0);
360 if (timer_tasks_.empty())
361 return;
362
363 const auto& next_task = timer_tasks_.top();
364 int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick());
365 uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms);
366 if (!timer_.StartOneShotTimer(milliseconds))
367 timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr);
368 }
369
370 void TaskQueue::ThreadState::CancelTimers() {
371 timer_.Cancel();
372 if (timer_id_) {
373 ::KillTimer(nullptr, timer_id_);
374 timer_id_ = 0;
375 }
376 }
377
395 } // namespace rtc 378 } // namespace rtc
OLDNEW
« no previous file with comments | « webrtc/base/task_queue_unittest.cc ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698