Chromium Code Reviews| Index: webrtc/base/task_queue_win.cc |
| diff --git a/webrtc/base/task_queue_win.cc b/webrtc/base/task_queue_win.cc |
| index bbaf7b9f44b4383feff79fd08697fea4e08c7e6b..82a0bedfb2ad2c30c16c047fe88d6e3c6b9bd7f7 100644 |
| --- a/webrtc/base/task_queue_win.cc |
| +++ b/webrtc/base/task_queue_win.cc |
| @@ -13,11 +13,12 @@ |
| #include <mmsystem.h> |
| #include <string.h> |
| -#include <algorithm> |
| +#include <queue> |
| #include "webrtc/base/arraysize.h" |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/logging.h" |
| +#include "webrtc/base/timeutils.h" |
| namespace rtc { |
| namespace { |
| @@ -67,112 +68,106 @@ ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) { |
| return kNormalPriority; |
| } |
| -#if defined(_WIN64) |
| -DWORD GetTick() { |
| +int64_t GetTick() { |
| static const UINT kPeriod = 1; |
| bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR); |
| - DWORD ret = timeGetTime(); |
| + int64_t ret = TimeMillis(); |
| if (high_res) |
| timeEndPeriod(kPeriod); |
| return ret; |
| } |
| -#endif |
| -} // namespace |
| -class TaskQueue::MultimediaTimer { |
| +class DelayedTaskInfo { |
| public: |
| - // kMaxTimers defines the limit of how many MultimediaTimer instances should |
| - // be created. |
| - // Background: The maximum number of supported handles for Wait functions, is |
| - // MAXIMUM_WAIT_OBJECTS - 1 (63). |
| - // There are some ways to work around the limitation but as it turns out, the |
| - // limit of concurrently active multimedia timers per process, is much lower, |
| - // or 16. So there isn't much value in going to the lenghts required to |
| - // overcome the Wait limitations. |
| - // kMaxTimers is larger than 16 though since it is possible that 'complete' or |
| - // signaled timers that haven't been handled, are counted as part of |
| - // kMaxTimers and thus a multimedia timer can actually be queued even though |
| - // as far as we're concerned, there are more than 16 that are pending. |
| - static const int kMaxTimers = MAXIMUM_WAIT_OBJECTS - 1; |
| - |
| - // Controls how many MultimediaTimer instances a queue can hold before |
| - // attempting to garbage collect (GC) timers that aren't in use. |
| - static const int kInstanceThresholdGC = 8; |
| + // Default ctor needed to support priority_queue::pop(). |
| + DelayedTaskInfo() {} |
| + DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task) |
| + : due_time_(GetTick() + milliseconds), task_(std::move(task)) {} |
| + DelayedTaskInfo(DelayedTaskInfo&&) = default; |
| + |
| + // Implement for <set> to maintain an order of increasing |due_time_|. |
|
the sun
2017/03/10 11:48:02
nit: <set> not correct anymore
tommi
2017/03/10 15:58:50
Done.
|
| + bool operator<(const DelayedTaskInfo& other) const { |
| + return due_time_ < other.due_time_; |
| + } |
| - MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {} |
| + // Required by priority_queue::pop(). |
| + DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default; |
| - MultimediaTimer(MultimediaTimer&& timer) |
| - : event_(timer.event_), |
| - timer_id_(timer.timer_id_), |
| - task_(std::move(timer.task_)) { |
| - RTC_DCHECK(event_); |
| - timer.event_ = nullptr; |
| - timer.timer_id_ = 0; |
| + // See below for why this method is const. |
| + void Run() const { |
| + RTC_DCHECK(due_time_); |
| + task_->Run() ? task_.reset() : static_cast<void>(task_.release()); |
| } |
| - ~MultimediaTimer() { Close(); } |
| - |
| - // Implementing this operator is required because of the way |
| - // some stl algorithms work, such as std::rotate(). |
| - MultimediaTimer& operator=(MultimediaTimer&& timer) { |
| - if (this != &timer) { |
| - Close(); |
| - event_ = timer.event_; |
| - timer.event_ = nullptr; |
| - task_ = std::move(timer.task_); |
| - timer_id_ = timer.timer_id_; |
| - timer.timer_id_ = 0; |
| - } |
| - return *this; |
| + int64_t due_time() const { return due_time_; } |
| + |
| + private: |
| + int64_t due_time_ = 0; // Absolute timestamp in milliseconds. |
| + |
| + // |task| needs to be mutable because std::priority_queue::top() returns |
| + // a const reference and a key in an ordered queue must not be changed. |
| + // There are two basic workarounds, one using const_cast, which would also |
| + // make the key (|due_time|), non-const and the other is to make the non-key |
| + // (|task|), mutable. |
| + // Because of this, the |task| variable is made private and can only be |
| + // mutated by calling the |Run()| method. |
| + mutable std::unique_ptr<QueuedTask> task_; |
| +}; |
| + |
| +class MultimediaTimer { |
| + public: |
| + MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {} |
| + |
| + ~MultimediaTimer() { |
| + Cancel(); |
| + ::CloseHandle(event_); |
| } |
| - bool StartOneShotTimer(std::unique_ptr<QueuedTask> task, UINT delay_ms) { |
| + bool StartOneShotTimer(UINT delay_ms) { |
| RTC_DCHECK_EQ(0, timer_id_); |
| RTC_DCHECK(event_ != nullptr); |
| - RTC_DCHECK(!task_.get()); |
| - RTC_DCHECK(task.get()); |
| - task_ = std::move(task); |
| timer_id_ = |
| ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0, |
| TIME_ONESHOT | TIME_CALLBACK_EVENT_SET); |
| return timer_id_ != 0; |
| } |
| - std::unique_ptr<QueuedTask> Cancel() { |
| + void Cancel() { |
| if (timer_id_) { |
| ::timeKillEvent(timer_id_); |
| timer_id_ = 0; |
| } |
| - return std::move(task_); |
| - } |
| - |
| - void OnEventSignaled() { |
| - RTC_DCHECK_NE(0, timer_id_); |
| - timer_id_ = 0; |
| - task_->Run() ? task_.reset() : static_cast<void>(task_.release()); |
| } |
| - HANDLE event() const { return event_; } |
| - |
| - bool is_active() const { return timer_id_ != 0; } |
| + HANDLE* event_for_wait() { return &event_; } |
| private: |
| - void Close() { |
| - Cancel(); |
| - |
| - if (event_) { |
| - ::CloseHandle(event_); |
| - event_ = nullptr; |
| - } |
| - } |
| - |
| HANDLE event_ = nullptr; |
| MMRESULT timer_id_ = 0; |
| - std::unique_ptr<QueuedTask> task_; |
| RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer); |
| }; |
| +} // namespace |
| + |
| +class TaskQueue::ThreadState { |
| + public: |
| + ThreadState() {} |
| + ~ThreadState() {} |
| + |
| + void RunThreadMain(); |
| + |
| + private: |
| + bool ProcessQueuedMessages(); |
| + void RunDueTasks(); |
| + void ScheduleNextTimer(); |
| + void CancelTimers(); |
| + |
| + MultimediaTimer timer_; |
| + std::priority_queue<DelayedTaskInfo> timer_tasks_; |
| + UINT_PTR timer_id_ = 0; |
| +}; |
| + |
| TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/) |
| : thread_(&TaskQueue::ThreadMain, |
| this, |
| @@ -220,18 +215,19 @@ void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) { |
| void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task, |
| uint32_t milliseconds) { |
| - WPARAM wparam; |
| -#if defined(_WIN64) |
| - // GetTickCount() returns a fairly coarse tick count (resolution or about 8ms) |
| - // so this compensation isn't that accurate, but since we have unused 32 bits |
| - // on Win64, we might as well use them. |
| - wparam = (static_cast<WPARAM>(GetTick()) << 32) | milliseconds; |
| -#else |
| - wparam = milliseconds; |
| -#endif |
| - if (::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam, |
| - reinterpret_cast<LPARAM>(task.get()))) { |
| - task.release(); |
| + if (!milliseconds) { |
| + PostTask(std::move(task)); |
| + return; |
| + } |
| + |
| + // TODO(tommi): Avoid this allocation. It is currently here since |
| + // the timestamp stored in the task info object, is a 64bit timestamp |
| + // and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the |
| + // task pointer and timestamp as LPARAM and WPARAM. |
| + auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task)); |
| + if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0, |
| + reinterpret_cast<LPARAM>(task_info))) { |
| + delete task_info; |
| } |
| } |
| @@ -260,65 +256,35 @@ void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| // static |
| void TaskQueue::ThreadMain(void* context) { |
| - HANDLE timer_handles[MultimediaTimer::kMaxTimers]; |
| - // Active multimedia timers. |
| - std::vector<MultimediaTimer> mm_timers; |
| - // Tasks that have been queued by using SetTimer/WM_TIMER. |
| - DelayedTasks delayed_tasks; |
| + ThreadState state; |
| + state.RunThreadMain(); |
| +} |
| +void TaskQueue::ThreadState::RunThreadMain() { |
| while (true) { |
| - RTC_DCHECK(mm_timers.size() <= arraysize(timer_handles)); |
| - DWORD count = 0; |
| - for (const auto& t : mm_timers) { |
| - if (!t.is_active()) |
| - break; |
| - timer_handles[count++] = t.event(); |
| - } |
| // Make sure we do an alertable wait as that's required to allow APCs to run |
| // (e.g. required for InitializeQueueThread and stopping the thread in |
| // PlatformThread). |
| - DWORD result = ::MsgWaitForMultipleObjectsEx(count, timer_handles, INFINITE, |
| - QS_ALLEVENTS, MWMO_ALERTABLE); |
| + DWORD result = ::MsgWaitForMultipleObjectsEx( |
| + 1, timer_.event_for_wait(), INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE); |
| RTC_CHECK_NE(WAIT_FAILED, result); |
| - // If we're not waiting for any timers, then count will be equal to |
| - // WAIT_OBJECT_0. If we're waiting for timers, then |count| represents |
| - // "One more than the number of timers", which means that there's a |
| - // message in the queue that needs to be handled. |
| - // If |result| is less than |count|, then its value will be the index of the |
| - // timer that has been signaled. |
| - if (result == (WAIT_OBJECT_0 + count)) { |
| - if (!ProcessQueuedMessages(&delayed_tasks, &mm_timers)) |
| + if (result == (WAIT_OBJECT_0 + 1)) { |
| + // There are messages in the message queue that need to be handled. |
| + if (!ProcessQueuedMessages()) |
| break; |
| - } else if (result < (WAIT_OBJECT_0 + count)) { |
| - mm_timers[result].OnEventSignaled(); |
| - RTC_DCHECK(!mm_timers[result].is_active()); |
| - // Reuse timer events by moving inactive timers to the back of the vector. |
| - // When new delayed tasks are queued, they'll get reused. |
| - if (mm_timers.size() > 1) { |
| - auto it = mm_timers.begin() + result; |
| - std::rotate(it, it + 1, mm_timers.end()); |
| - } |
| - |
| - // Collect some garbage. |
| - if (mm_timers.size() > MultimediaTimer::kInstanceThresholdGC) { |
| - const auto inactive = std::find_if( |
| - mm_timers.begin(), mm_timers.end(), |
| - [](const MultimediaTimer& t) { return !t.is_active(); }); |
| - if (inactive != mm_timers.end()) { |
| - // Since inactive timers are always moved to the back, we can |
| - // safely delete all timers following the first inactive one. |
| - mm_timers.erase(inactive, mm_timers.end()); |
| - } |
| - } |
| + } else if (result == WAIT_OBJECT_0) { |
| + // The multimedia timer was signaled. |
| + timer_.Cancel(); |
| + RTC_DCHECK(!timer_tasks_.empty()); |
| + RunDueTasks(); |
| + ScheduleNextTimer(); |
| } else { |
| RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result); |
| } |
| } |
| } |
| -// static |
| -bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks, |
| - std::vector<MultimediaTimer>* timers) { |
| +bool TaskQueue::ThreadState::ProcessQueuedMessages() { |
| MSG msg = {}; |
| while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) && |
| msg.message != WM_QUIT) { |
| @@ -331,53 +297,23 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks, |
| break; |
| } |
| case WM_QUEUE_DELAYED_TASK: { |
| - std::unique_ptr<QueuedTask> task( |
| - reinterpret_cast<QueuedTask*>(msg.lParam)); |
| - uint32_t milliseconds = msg.wParam & 0xFFFFFFFF; |
| -#if defined(_WIN64) |
| - // Subtract the time it took to queue the timer. |
| - const DWORD now = GetTick(); |
| - DWORD post_time = now - (msg.wParam >> 32); |
| - milliseconds = |
| - post_time > milliseconds ? 0 : milliseconds - post_time; |
| -#endif |
| - bool timer_queued = false; |
| - if (timers->size() < MultimediaTimer::kMaxTimers) { |
| - MultimediaTimer* timer = nullptr; |
| - auto available = std::find_if( |
| - timers->begin(), timers->end(), |
| - [](const MultimediaTimer& t) { return !t.is_active(); }); |
| - if (available != timers->end()) { |
| - timer = &(*available); |
| - } else { |
| - timers->emplace_back(); |
| - timer = &timers->back(); |
| - } |
| - |
| - timer_queued = |
| - timer->StartOneShotTimer(std::move(task), milliseconds); |
| - if (!timer_queued) { |
| - // No more multimedia timers can be queued. |
| - // Detach the task and fall back on SetTimer. |
| - task = timer->Cancel(); |
| - } |
| - } |
| - |
| - // When we fail to use multimedia timers, we fall back on the more |
| - // coarse SetTimer/WM_TIMER approach. |
| - if (!timer_queued) { |
| - UINT_PTR timer_id = ::SetTimer(nullptr, 0, milliseconds, nullptr); |
| - delayed_tasks->insert(std::make_pair(timer_id, task.release())); |
| + std::unique_ptr<DelayedTaskInfo> info( |
| + reinterpret_cast<DelayedTaskInfo*>(msg.lParam)); |
| + bool need_to_schedule_timers = timer_tasks_.empty() || |
| + timer_tasks_.top().due_time() > info->due_time(); |
| + timer_tasks_.emplace(std::move(*info.get())); |
| + if (need_to_schedule_timers) { |
| + CancelTimers(); |
| + ScheduleNextTimer(); |
| } |
| break; |
| } |
| case WM_TIMER: { |
| + RTC_DCHECK_EQ(timer_id_, msg.wParam); |
| ::KillTimer(nullptr, msg.wParam); |
| - auto found = delayed_tasks->find(msg.wParam); |
| - RTC_DCHECK(found != delayed_tasks->end()); |
| - if (!found->second->Run()) |
| - found->second.release(); |
| - delayed_tasks->erase(found); |
| + timer_id_ = 0; |
| + RunDueTasks(); |
| + ScheduleNextTimer(); |
| break; |
| } |
| default: |
| @@ -392,4 +328,38 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks, |
| return msg.message != WM_QUIT; |
| } |
| +void TaskQueue::ThreadState::RunDueTasks() { |
| + RTC_DCHECK(!timer_tasks_.empty()); |
| + auto now = GetTick(); |
| + do { |
| + const auto& top = timer_tasks_.top(); |
| + if (top.due_time() > now) |
|
the sun
2017/03/10 11:48:02
Is it better to check against GetTick() here, in c
tommi
2017/03/10 15:58:50
The thinking in the previous patch set was exactly
|
| + break; |
| + top.Run(); |
| + timer_tasks_.pop(); |
| + } while (!timer_tasks_.empty()); |
| +} |
| + |
| +void TaskQueue::ThreadState::ScheduleNextTimer() { |
| + RTC_DCHECK_EQ(timer_id_, 0); |
| + if (timer_tasks_.empty()) |
| + return; |
| + |
| + auto now = GetTick(); |
|
the sun
2017/03/10 11:48:02
nit:
int64_t delay_ms = std::max(0, timer_tasks.to
tommi
2017/03/10 15:58:50
Done.
|
| + |
| + const auto& next_task = timer_tasks_.top(); |
| + uint32_t milliseconds = next_task.due_time() <= now ? 0u : |
| + static_cast<uint32_t>(next_task.due_time() - now); |
| + if (!timer_.StartOneShotTimer(milliseconds)) |
| + timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr); |
| +} |
| + |
| +void TaskQueue::ThreadState::CancelTimers() { |
| + timer_.Cancel(); |
| + if (timer_id_) { |
| + ::KillTimer(nullptr, timer_id_); |
| + timer_id_ = 0; |
| + } |
| +} |
| + |
| } // namespace rtc |