Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(231)

Side by Side Diff: webrtc/base/task_queue_win.cc

Issue 2733723002: Refactor Windows TaskQueue code to only need a single high res timer. (Closed)
Patch Set: Address other comments Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « webrtc/base/task_queue_unittest.cc ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. 2 * Copyright 2016 The WebRTC Project Authors. All rights reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/base/task_queue.h" 11 #include "webrtc/base/task_queue.h"
12 12
13 #include <mmsystem.h> 13 #include <mmsystem.h>
14 #include <string.h> 14 #include <string.h>
15 15
16 #include <algorithm> 16 #include <queue>
17 17
18 #include "webrtc/base/arraysize.h" 18 #include "webrtc/base/arraysize.h"
19 #include "webrtc/base/checks.h" 19 #include "webrtc/base/checks.h"
20 #include "webrtc/base/logging.h" 20 #include "webrtc/base/logging.h"
21 #include "webrtc/base/timeutils.h"
21 22
22 namespace rtc { 23 namespace rtc {
23 namespace { 24 namespace {
24 #define WM_RUN_TASK WM_USER + 1 25 #define WM_RUN_TASK WM_USER + 1
25 #define WM_QUEUE_DELAYED_TASK WM_USER + 2 26 #define WM_QUEUE_DELAYED_TASK WM_USER + 2
26 27
27 using Priority = TaskQueue::Priority; 28 using Priority = TaskQueue::Priority;
28 29
29 DWORD g_queue_ptr_tls = 0; 30 DWORD g_queue_ptr_tls = 0;
30 31
(...skipping 29 matching lines...) Expand all
60 return kLowPriority; 61 return kLowPriority;
61 case Priority::NORMAL: 62 case Priority::NORMAL:
62 return kNormalPriority; 63 return kNormalPriority;
63 default: 64 default:
64 RTC_NOTREACHED(); 65 RTC_NOTREACHED();
65 break; 66 break;
66 } 67 }
67 return kNormalPriority; 68 return kNormalPriority;
68 } 69 }
69 70
70 #if defined(_WIN64) 71 int64_t GetTick() {
71 DWORD GetTick() {
72 static const UINT kPeriod = 1; 72 static const UINT kPeriod = 1;
73 bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR); 73 bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR);
74 DWORD ret = timeGetTime(); 74 int64_t ret = TimeMillis();
75 if (high_res) 75 if (high_res)
76 timeEndPeriod(kPeriod); 76 timeEndPeriod(kPeriod);
77 return ret; 77 return ret;
78 } 78 }
79 #endif
80 } // namespace
81 79
82 class TaskQueue::MultimediaTimer { 80 class DelayedTaskInfo {
83 public: 81 public:
84 // kMaxTimers defines the limit of how many MultimediaTimer instances should 82 // Default ctor needed to support priority_queue::pop().
85 // be created. 83 DelayedTaskInfo() {}
86 // Background: The maximum number of supported handles for Wait functions, is 84 DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task)
87 // MAXIMUM_WAIT_OBJECTS - 1 (63). 85 : due_time_(GetTick() + milliseconds), task_(std::move(task)) {}
88 // There are some ways to work around the limitation but as it turns out, the 86 DelayedTaskInfo(DelayedTaskInfo&&) = default;
89 // limit of concurrently active multimedia timers per process, is much lower,
90 // or 16. So there isn't much value in going to the lenghts required to
91 // overcome the Wait limitations.
92 // kMaxTimers is larger than 16 though since it is possible that 'complete' or
93 // signaled timers that haven't been handled, are counted as part of
94 // kMaxTimers and thus a multimedia timer can actually be queued even though
95 // as far as we're concerned, there are more than 16 that are pending.
96 static const int kMaxTimers = MAXIMUM_WAIT_OBJECTS - 1;
97 87
98 // Controls how many MultimediaTimer instances a queue can hold before 88 // Implement for <set> to maintain an order of increasing |due_time_|.
the sun 2017/03/10 11:48:02 nit: <set> not correct anymore
tommi 2017/03/10 15:58:50 Done.
99 // attempting to garbage collect (GC) timers that aren't in use. 89 bool operator<(const DelayedTaskInfo& other) const {
100 static const int kInstanceThresholdGC = 8; 90 return due_time_ < other.due_time_;
91 }
101 92
93 // Required by priority_queue::pop().
94 DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default;
95
96 // See below for why this method is const.
97 void Run() const {
98 RTC_DCHECK(due_time_);
99 task_->Run() ? task_.reset() : static_cast<void>(task_.release());
100 }
101
102 int64_t due_time() const { return due_time_; }
103
104 private:
105 int64_t due_time_ = 0; // Absolute timestamp in milliseconds.
106
107 // |task| needs to be mutable because std::priority_queue::top() returns
108 // a const reference and a key in an ordered queue must not be changed.
109 // There are two basic workarounds, one using const_cast, which would also
110 // make the key (|due_time|), non-const and the other is to make the non-key
111 // (|task|), mutable.
112 // Because of this, the |task| variable is made private and can only be
113 // mutated by calling the |Run()| method.
114 mutable std::unique_ptr<QueuedTask> task_;
115 };
116
117 class MultimediaTimer {
118 public:
102 MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {} 119 MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {}
103 120
104 MultimediaTimer(MultimediaTimer&& timer) 121 ~MultimediaTimer() {
105 : event_(timer.event_), 122 Cancel();
106 timer_id_(timer.timer_id_), 123 ::CloseHandle(event_);
107 task_(std::move(timer.task_)) {
108 RTC_DCHECK(event_);
109 timer.event_ = nullptr;
110 timer.timer_id_ = 0;
111 } 124 }
112 125
113 ~MultimediaTimer() { Close(); } 126 bool StartOneShotTimer(UINT delay_ms) {
114
115 // Implementing this operator is required because of the way
116 // some stl algorithms work, such as std::rotate().
117 MultimediaTimer& operator=(MultimediaTimer&& timer) {
118 if (this != &timer) {
119 Close();
120 event_ = timer.event_;
121 timer.event_ = nullptr;
122 task_ = std::move(timer.task_);
123 timer_id_ = timer.timer_id_;
124 timer.timer_id_ = 0;
125 }
126 return *this;
127 }
128
129 bool StartOneShotTimer(std::unique_ptr<QueuedTask> task, UINT delay_ms) {
130 RTC_DCHECK_EQ(0, timer_id_); 127 RTC_DCHECK_EQ(0, timer_id_);
131 RTC_DCHECK(event_ != nullptr); 128 RTC_DCHECK(event_ != nullptr);
132 RTC_DCHECK(!task_.get());
133 RTC_DCHECK(task.get());
134 task_ = std::move(task);
135 timer_id_ = 129 timer_id_ =
136 ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0, 130 ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
137 TIME_ONESHOT | TIME_CALLBACK_EVENT_SET); 131 TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
138 return timer_id_ != 0; 132 return timer_id_ != 0;
139 } 133 }
140 134
141 std::unique_ptr<QueuedTask> Cancel() { 135 void Cancel() {
142 if (timer_id_) { 136 if (timer_id_) {
143 ::timeKillEvent(timer_id_); 137 ::timeKillEvent(timer_id_);
144 timer_id_ = 0; 138 timer_id_ = 0;
145 } 139 }
146 return std::move(task_);
147 } 140 }
148 141
149 void OnEventSignaled() { 142 HANDLE* event_for_wait() { return &event_; }
150 RTC_DCHECK_NE(0, timer_id_);
151 timer_id_ = 0;
152 task_->Run() ? task_.reset() : static_cast<void>(task_.release());
153 }
154
155 HANDLE event() const { return event_; }
156
157 bool is_active() const { return timer_id_ != 0; }
158 143
159 private: 144 private:
160 void Close() {
161 Cancel();
162
163 if (event_) {
164 ::CloseHandle(event_);
165 event_ = nullptr;
166 }
167 }
168
169 HANDLE event_ = nullptr; 145 HANDLE event_ = nullptr;
170 MMRESULT timer_id_ = 0; 146 MMRESULT timer_id_ = 0;
171 std::unique_ptr<QueuedTask> task_;
172 147
173 RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer); 148 RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
174 }; 149 };
175 150
151 } // namespace
152
153 class TaskQueue::ThreadState {
154 public:
155 ThreadState() {}
156 ~ThreadState() {}
157
158 void RunThreadMain();
159
160 private:
161 bool ProcessQueuedMessages();
162 void RunDueTasks();
163 void ScheduleNextTimer();
164 void CancelTimers();
165
166 MultimediaTimer timer_;
167 std::priority_queue<DelayedTaskInfo> timer_tasks_;
168 UINT_PTR timer_id_ = 0;
169 };
170
176 TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/) 171 TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/)
177 : thread_(&TaskQueue::ThreadMain, 172 : thread_(&TaskQueue::ThreadMain,
178 this, 173 this,
179 queue_name, 174 queue_name,
180 TaskQueuePriorityToThreadPriority(priority)) { 175 TaskQueuePriorityToThreadPriority(priority)) {
181 RTC_DCHECK(queue_name); 176 RTC_DCHECK(queue_name);
182 thread_.Start(); 177 thread_.Start();
183 Event event(false, false); 178 Event event(false, false);
184 ThreadStartupData startup = {&event, this}; 179 ThreadStartupData startup = {&event, this};
185 RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread, 180 RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread,
(...skipping 27 matching lines...) Expand all
213 208
214 void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) { 209 void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
215 if (::PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0, 210 if (::PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0,
216 reinterpret_cast<LPARAM>(task.get()))) { 211 reinterpret_cast<LPARAM>(task.get()))) {
217 task.release(); 212 task.release();
218 } 213 }
219 } 214 }
220 215
221 void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task, 216 void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
222 uint32_t milliseconds) { 217 uint32_t milliseconds) {
223 WPARAM wparam; 218 if (!milliseconds) {
224 #if defined(_WIN64) 219 PostTask(std::move(task));
225 // GetTickCount() returns a fairly coarse tick count (resolution or about 8ms) 220 return;
226 // so this compensation isn't that accurate, but since we have unused 32 bits 221 }
227 // on Win64, we might as well use them. 222
228 wparam = (static_cast<WPARAM>(GetTick()) << 32) | milliseconds; 223 // TODO(tommi): Avoid this allocation. It is currently here since
229 #else 224 // the timestamp stored in the task info object, is a 64bit timestamp
230 wparam = milliseconds; 225 // and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the
231 #endif 226 // task pointer and timestamp as LPARAM and WPARAM.
232 if (::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam, 227 auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task));
233 reinterpret_cast<LPARAM>(task.get()))) { 228 if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0,
234 task.release(); 229 reinterpret_cast<LPARAM>(task_info))) {
230 delete task_info;
235 } 231 }
236 } 232 }
237 233
238 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, 234 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
239 std::unique_ptr<QueuedTask> reply, 235 std::unique_ptr<QueuedTask> reply,
240 TaskQueue* reply_queue) { 236 TaskQueue* reply_queue) {
241 QueuedTask* task_ptr = task.release(); 237 QueuedTask* task_ptr = task.release();
242 QueuedTask* reply_task_ptr = reply.release(); 238 QueuedTask* reply_task_ptr = reply.release();
243 DWORD reply_thread_id = reply_queue->thread_.GetThreadRef(); 239 DWORD reply_thread_id = reply_queue->thread_.GetThreadRef();
244 PostTask([task_ptr, reply_task_ptr, reply_thread_id]() { 240 PostTask([task_ptr, reply_task_ptr, reply_thread_id]() {
245 if (task_ptr->Run()) 241 if (task_ptr->Run())
246 delete task_ptr; 242 delete task_ptr;
247 // If the thread's message queue is full, we can't queue the task and will 243 // If the thread's message queue is full, we can't queue the task and will
248 // have to drop it (i.e. delete). 244 // have to drop it (i.e. delete).
249 if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0, 245 if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
250 reinterpret_cast<LPARAM>(reply_task_ptr))) { 246 reinterpret_cast<LPARAM>(reply_task_ptr))) {
251 delete reply_task_ptr; 247 delete reply_task_ptr;
252 } 248 }
253 }); 249 });
254 } 250 }
255 251
256 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, 252 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
257 std::unique_ptr<QueuedTask> reply) { 253 std::unique_ptr<QueuedTask> reply) {
258 return PostTaskAndReply(std::move(task), std::move(reply), Current()); 254 return PostTaskAndReply(std::move(task), std::move(reply), Current());
259 } 255 }
260 256
261 // static 257 // static
262 void TaskQueue::ThreadMain(void* context) { 258 void TaskQueue::ThreadMain(void* context) {
263 HANDLE timer_handles[MultimediaTimer::kMaxTimers]; 259 ThreadState state;
264 // Active multimedia timers. 260 state.RunThreadMain();
265 std::vector<MultimediaTimer> mm_timers; 261 }
266 // Tasks that have been queued by using SetTimer/WM_TIMER.
267 DelayedTasks delayed_tasks;
268 262
263 void TaskQueue::ThreadState::RunThreadMain() {
269 while (true) { 264 while (true) {
270 RTC_DCHECK(mm_timers.size() <= arraysize(timer_handles));
271 DWORD count = 0;
272 for (const auto& t : mm_timers) {
273 if (!t.is_active())
274 break;
275 timer_handles[count++] = t.event();
276 }
277 // Make sure we do an alertable wait as that's required to allow APCs to run 265 // Make sure we do an alertable wait as that's required to allow APCs to run
278 // (e.g. required for InitializeQueueThread and stopping the thread in 266 // (e.g. required for InitializeQueueThread and stopping the thread in
279 // PlatformThread). 267 // PlatformThread).
280 DWORD result = ::MsgWaitForMultipleObjectsEx(count, timer_handles, INFINITE, 268 DWORD result = ::MsgWaitForMultipleObjectsEx(
281 QS_ALLEVENTS, MWMO_ALERTABLE); 269 1, timer_.event_for_wait(), INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE);
282 RTC_CHECK_NE(WAIT_FAILED, result); 270 RTC_CHECK_NE(WAIT_FAILED, result);
283 // If we're not waiting for any timers, then count will be equal to 271 if (result == (WAIT_OBJECT_0 + 1)) {
284 // WAIT_OBJECT_0. If we're waiting for timers, then |count| represents 272 // There are messages in the message queue that need to be handled.
285 // "One more than the number of timers", which means that there's a 273 if (!ProcessQueuedMessages())
286 // message in the queue that needs to be handled.
287 // If |result| is less than |count|, then its value will be the index of the
288 // timer that has been signaled.
289 if (result == (WAIT_OBJECT_0 + count)) {
290 if (!ProcessQueuedMessages(&delayed_tasks, &mm_timers))
291 break; 274 break;
292 } else if (result < (WAIT_OBJECT_0 + count)) { 275 } else if (result == WAIT_OBJECT_0) {
293 mm_timers[result].OnEventSignaled(); 276 // The multimedia timer was signaled.
294 RTC_DCHECK(!mm_timers[result].is_active()); 277 timer_.Cancel();
295 // Reuse timer events by moving inactive timers to the back of the vector. 278 RTC_DCHECK(!timer_tasks_.empty());
296 // When new delayed tasks are queued, they'll get reused. 279 RunDueTasks();
297 if (mm_timers.size() > 1) { 280 ScheduleNextTimer();
298 auto it = mm_timers.begin() + result;
299 std::rotate(it, it + 1, mm_timers.end());
300 }
301
302 // Collect some garbage.
303 if (mm_timers.size() > MultimediaTimer::kInstanceThresholdGC) {
304 const auto inactive = std::find_if(
305 mm_timers.begin(), mm_timers.end(),
306 [](const MultimediaTimer& t) { return !t.is_active(); });
307 if (inactive != mm_timers.end()) {
308 // Since inactive timers are always moved to the back, we can
309 // safely delete all timers following the first inactive one.
310 mm_timers.erase(inactive, mm_timers.end());
311 }
312 }
313 } else { 281 } else {
314 RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result); 282 RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result);
315 } 283 }
316 } 284 }
317 } 285 }
318 286
319 // static 287 bool TaskQueue::ThreadState::ProcessQueuedMessages() {
320 bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks,
321 std::vector<MultimediaTimer>* timers) {
322 MSG msg = {}; 288 MSG msg = {};
323 while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) && 289 while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
324 msg.message != WM_QUIT) { 290 msg.message != WM_QUIT) {
325 if (!msg.hwnd) { 291 if (!msg.hwnd) {
326 switch (msg.message) { 292 switch (msg.message) {
327 case WM_RUN_TASK: { 293 case WM_RUN_TASK: {
328 QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam); 294 QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam);
329 if (task->Run()) 295 if (task->Run())
330 delete task; 296 delete task;
331 break; 297 break;
332 } 298 }
333 case WM_QUEUE_DELAYED_TASK: { 299 case WM_QUEUE_DELAYED_TASK: {
334 std::unique_ptr<QueuedTask> task( 300 std::unique_ptr<DelayedTaskInfo> info(
335 reinterpret_cast<QueuedTask*>(msg.lParam)); 301 reinterpret_cast<DelayedTaskInfo*>(msg.lParam));
336 uint32_t milliseconds = msg.wParam & 0xFFFFFFFF; 302 bool need_to_schedule_timers = timer_tasks_.empty() ||
337 #if defined(_WIN64) 303 timer_tasks_.top().due_time() > info->due_time();
338 // Subtract the time it took to queue the timer. 304 timer_tasks_.emplace(std::move(*info.get()));
339 const DWORD now = GetTick(); 305 if (need_to_schedule_timers) {
340 DWORD post_time = now - (msg.wParam >> 32); 306 CancelTimers();
341 milliseconds = 307 ScheduleNextTimer();
342 post_time > milliseconds ? 0 : milliseconds - post_time;
343 #endif
344 bool timer_queued = false;
345 if (timers->size() < MultimediaTimer::kMaxTimers) {
346 MultimediaTimer* timer = nullptr;
347 auto available = std::find_if(
348 timers->begin(), timers->end(),
349 [](const MultimediaTimer& t) { return !t.is_active(); });
350 if (available != timers->end()) {
351 timer = &(*available);
352 } else {
353 timers->emplace_back();
354 timer = &timers->back();
355 }
356
357 timer_queued =
358 timer->StartOneShotTimer(std::move(task), milliseconds);
359 if (!timer_queued) {
360 // No more multimedia timers can be queued.
361 // Detach the task and fall back on SetTimer.
362 task = timer->Cancel();
363 }
364 }
365
366 // When we fail to use multimedia timers, we fall back on the more
367 // coarse SetTimer/WM_TIMER approach.
368 if (!timer_queued) {
369 UINT_PTR timer_id = ::SetTimer(nullptr, 0, milliseconds, nullptr);
370 delayed_tasks->insert(std::make_pair(timer_id, task.release()));
371 } 308 }
372 break; 309 break;
373 } 310 }
374 case WM_TIMER: { 311 case WM_TIMER: {
312 RTC_DCHECK_EQ(timer_id_, msg.wParam);
375 ::KillTimer(nullptr, msg.wParam); 313 ::KillTimer(nullptr, msg.wParam);
376 auto found = delayed_tasks->find(msg.wParam); 314 timer_id_ = 0;
377 RTC_DCHECK(found != delayed_tasks->end()); 315 RunDueTasks();
378 if (!found->second->Run()) 316 ScheduleNextTimer();
379 found->second.release();
380 delayed_tasks->erase(found);
381 break; 317 break;
382 } 318 }
383 default: 319 default:
384 RTC_NOTREACHED(); 320 RTC_NOTREACHED();
385 break; 321 break;
386 } 322 }
387 } else { 323 } else {
388 ::TranslateMessage(&msg); 324 ::TranslateMessage(&msg);
389 ::DispatchMessage(&msg); 325 ::DispatchMessage(&msg);
390 } 326 }
391 } 327 }
392 return msg.message != WM_QUIT; 328 return msg.message != WM_QUIT;
393 } 329 }
394 330
331 void TaskQueue::ThreadState::RunDueTasks() {
332 RTC_DCHECK(!timer_tasks_.empty());
333 auto now = GetTick();
334 do {
335 const auto& top = timer_tasks_.top();
336 if (top.due_time() > now)
the sun 2017/03/10 11:48:02 Is it better to check against GetTick() here, in c
tommi 2017/03/10 15:58:50 The thinking in the previous patch set was exactly
337 break;
338 top.Run();
339 timer_tasks_.pop();
340 } while (!timer_tasks_.empty());
341 }
342
343 void TaskQueue::ThreadState::ScheduleNextTimer() {
344 RTC_DCHECK_EQ(timer_id_, 0);
345 if (timer_tasks_.empty())
346 return;
347
348 auto now = GetTick();
the sun 2017/03/10 11:48:02 nit: int64_t delay_ms = std::max(0, timer_tasks.to
tommi 2017/03/10 15:58:50 Done.
349
350 const auto& next_task = timer_tasks_.top();
351 uint32_t milliseconds = next_task.due_time() <= now ? 0u :
352 static_cast<uint32_t>(next_task.due_time() - now);
353 if (!timer_.StartOneShotTimer(milliseconds))
354 timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr);
355 }
356
357 void TaskQueue::ThreadState::CancelTimers() {
358 timer_.Cancel();
359 if (timer_id_) {
360 ::KillTimer(nullptr, timer_id_);
361 timer_id_ = 0;
362 }
363 }
364
395 } // namespace rtc 365 } // namespace rtc
OLDNEW
« no previous file with comments | « webrtc/base/task_queue_unittest.cc ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698