Chromium Code Reviews| Index: webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc | 
| diff --git a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc | 
| index 38d5beb5fba0c4d5873bfe2ccc7db91191f2ad8f..18a07b2f5a158eb1b649e3f549e5d4da6fd93d2b 100644 | 
| --- a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc | 
| +++ b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc | 
| @@ -20,15 +20,16 @@ namespace { | 
| constexpr float kSaturationLeakageFactor = 10.f; | 
| constexpr size_t kSaturationLeakageBlocks = 10; | 
| +constexpr size_t kEchoPathChangeConvergenceBlocks = 3 * 250; | 
| // Estimates the residual echo power when there is no detection correlation | 
| // between the render and capture signals. | 
| void InfiniteErlPowerEstimate( | 
| - size_t active_render_counter, | 
| + size_t active_render_blocks, | 
| size_t blocks_since_last_saturation, | 
| const std::array<float, kFftLengthBy2Plus1>& S2_fallback, | 
| std::array<float, kFftLengthBy2Plus1>* R2) { | 
| - if (active_render_counter > 5 * 250) { | 
| + if (active_render_blocks > 5 * 250) { | 
| // After an amount of active render samples for which an echo should have | 
| // been detected in the capture signal if the ERL was not infinite, set the | 
| // residual echo to 0. | 
| @@ -62,6 +63,7 @@ void GainBasedPowerEstimate( | 
| size_t external_delay, | 
| const FftBuffer& X_buffer, | 
| size_t blocks_since_last_saturation, | 
| + size_t active_render_blocks, | 
| const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, | 
| const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, | 
| const std::array<float, kFftLengthBy2Plus1>& S2_fallback, | 
| @@ -71,10 +73,17 @@ void GainBasedPowerEstimate( | 
| // Base the residual echo power on gain of the linear echo path estimate if | 
| // that is reliable, otherwise use the fallback echo path estimate. Add a | 
| // leakage factor when there is saturation. | 
| - for (size_t k = 0; k < R2->size(); ++k) { | 
| - (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k] | 
| - : S2_fallback[k]; | 
| + if (active_render_blocks > kEchoPathChangeConvergenceBlocks) { | 
| 
 
peah-webrtc
2017/02/27 14:26:03
The filter-based echo path gain cannot be used unt
 
 | 
| + for (size_t k = 0; k < R2->size(); ++k) { | 
| + (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k] | 
| + : S2_fallback[k]; | 
| + } | 
| + } else { | 
| + for (size_t k = 0; k < R2->size(); ++k) { | 
| + (*R2)[k] = S2_fallback[k]; | 
| + } | 
| } | 
| + | 
| if (blocks_since_last_saturation < kSaturationLeakageBlocks) { | 
| std::for_each(R2->begin(), R2->end(), | 
| [](float& a) { a *= kSaturationLeakageFactor; }); | 
| @@ -145,7 +154,7 @@ void ErleBasedPowerEstimate( | 
| } // namespace | 
| ResidualEchoEstimator::ResidualEchoEstimator() { | 
| - echo_path_gain_.fill(0.f); | 
| + echo_path_gain_.fill(100.f); | 
| 
 
peah-webrtc
2017/02/27 14:26:03
Not important, but more appropriate.
 
 | 
| } | 
| ResidualEchoEstimator::~ResidualEchoEstimator() = default; | 
| @@ -169,6 +178,10 @@ void ResidualEchoEstimator::Estimate( | 
| if (linear_filter_based_delay) { | 
| std::copy(H2[*linear_filter_based_delay].begin(), | 
| H2[*linear_filter_based_delay].end(), echo_path_gain_.begin()); | 
| + constexpr float kEchoPathGainHeadroom = 10.f; | 
| + std::for_each( | 
| + echo_path_gain_.begin(), echo_path_gain_.end(), | 
| + [kEchoPathGainHeadroom](float& a) { a *= kEchoPathGainHeadroom; }); | 
| 
 
peah-webrtc
2017/02/27 14:26:03
Since the filter-based frequency response of the e
 
 | 
| } | 
| // Counts the blocks since saturation. | 
| @@ -178,11 +191,6 @@ void ResidualEchoEstimator::Estimate( | 
| ++blocks_since_last_saturation_; | 
| } | 
| - // Counts the number of active render blocks that are in a row. | 
| 
 
peah-webrtc
2017/02/27 14:26:03
This counter was not correctly done.
 
 | 
| - if (aec_state.ActiveRender()) { | 
| - ++active_render_counter_; | 
| - } | 
| - | 
| const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter(); | 
| if (aec_state.UsableLinearEstimate()) { | 
| @@ -200,16 +208,25 @@ void ResidualEchoEstimator::Estimate( | 
| RTC_DCHECK(aec_state.ExternalDelay()); | 
| GainBasedPowerEstimate( | 
| *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_, | 
| - bands_with_reliable_filter, echo_path_gain_, S2_fallback, R2); | 
| + aec_state.ActiveRenderBlocks(), bands_with_reliable_filter, | 
| + echo_path_gain_, S2_fallback, R2); | 
| } else if (aec_state.EchoLeakageDetected()) { | 
| // Residual echo power when an external residual echo detection algorithm | 
| // has deemed the echo canceller to leak echoes. | 
| HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2); | 
| } else { | 
| // Residual echo power when none of the other cases are fulfilled. | 
| - InfiniteErlPowerEstimate(active_render_counter_, | 
| + InfiniteErlPowerEstimate(aec_state.ActiveRenderBlocks(), | 
| blocks_since_last_saturation_, S2_fallback, R2); | 
| } | 
| } | 
| +void ResidualEchoEstimator::HandleEchoPathChange( | 
| + const EchoPathVariability& echo_path_variability) { | 
| + if (echo_path_variability.AudioPathChanged()) { | 
| + blocks_since_last_saturation_ = 0; | 
| + echo_path_gain_.fill(100.f); | 
| + } | 
| +} | 
| + | 
| } // namespace webrtc |