Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(236)

Side by Side Diff: webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc

Issue 2717353002: Further tuning for AEC3 for initial echo suppression and handling of echo path changes (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h" 11 #include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h"
12 12
13 #include <math.h> 13 #include <math.h>
14 #include <vector> 14 #include <vector>
15 15
16 #include "webrtc/base/checks.h" 16 #include "webrtc/base/checks.h"
17 17
18 namespace webrtc { 18 namespace webrtc {
19 namespace { 19 namespace {
20 20
21 constexpr float kSaturationLeakageFactor = 10.f; 21 constexpr float kSaturationLeakageFactor = 10.f;
22 constexpr size_t kSaturationLeakageBlocks = 10; 22 constexpr size_t kSaturationLeakageBlocks = 10;
23 constexpr size_t kEchoPathChangeConvergenceBlocks = 3 * 250;
23 24
24 // Estimates the residual echo power when there is no detection correlation 25 // Estimates the residual echo power when there is no detection correlation
25 // between the render and capture signals. 26 // between the render and capture signals.
26 void InfiniteErlPowerEstimate( 27 void InfiniteErlPowerEstimate(
27 size_t active_render_counter, 28 size_t active_render_blocks,
28 size_t blocks_since_last_saturation, 29 size_t blocks_since_last_saturation,
29 const std::array<float, kFftLengthBy2Plus1>& S2_fallback, 30 const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
30 std::array<float, kFftLengthBy2Plus1>* R2) { 31 std::array<float, kFftLengthBy2Plus1>* R2) {
31 if (active_render_counter > 5 * 250) { 32 if (active_render_blocks > 5 * 250) {
32 // After an amount of active render samples for which an echo should have 33 // After an amount of active render samples for which an echo should have
33 // been detected in the capture signal if the ERL was not infinite, set the 34 // been detected in the capture signal if the ERL was not infinite, set the
34 // residual echo to 0. 35 // residual echo to 0.
35 R2->fill(0.f); 36 R2->fill(0.f);
36 } else { 37 } else {
37 // Before certainty has been reached about the presence of echo, use the 38 // Before certainty has been reached about the presence of echo, use the
38 // fallback echo power estimate as the residual echo estimate. Add a leakage 39 // fallback echo power estimate as the residual echo estimate. Add a leakage
39 // factor when there is saturation. 40 // factor when there is saturation.
40 std::copy(S2_fallback.begin(), S2_fallback.end(), R2->begin()); 41 std::copy(S2_fallback.begin(), S2_fallback.end(), R2->begin());
41 if (blocks_since_last_saturation < kSaturationLeakageBlocks) { 42 if (blocks_since_last_saturation < kSaturationLeakageBlocks) {
(...skipping 13 matching lines...) Expand all
55 } else { 56 } else {
56 R2->fill(0.f); 57 R2->fill(0.f);
57 } 58 }
58 } 59 }
59 60
60 // Estimates the residual echo power based on gains. 61 // Estimates the residual echo power based on gains.
61 void GainBasedPowerEstimate( 62 void GainBasedPowerEstimate(
62 size_t external_delay, 63 size_t external_delay,
63 const FftBuffer& X_buffer, 64 const FftBuffer& X_buffer,
64 size_t blocks_since_last_saturation, 65 size_t blocks_since_last_saturation,
66 size_t active_render_blocks,
65 const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, 67 const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter,
66 const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, 68 const std::array<float, kFftLengthBy2Plus1>& echo_path_gain,
67 const std::array<float, kFftLengthBy2Plus1>& S2_fallback, 69 const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
68 std::array<float, kFftLengthBy2Plus1>* R2) { 70 std::array<float, kFftLengthBy2Plus1>* R2) {
69 const auto& X2 = X_buffer.Spectrum(external_delay); 71 const auto& X2 = X_buffer.Spectrum(external_delay);
70 72
71 // Base the residual echo power on gain of the linear echo path estimate if 73 // Base the residual echo power on gain of the linear echo path estimate if
72 // that is reliable, otherwise use the fallback echo path estimate. Add a 74 // that is reliable, otherwise use the fallback echo path estimate. Add a
73 // leakage factor when there is saturation. 75 // leakage factor when there is saturation.
74 for (size_t k = 0; k < R2->size(); ++k) { 76 if (active_render_blocks > kEchoPathChangeConvergenceBlocks) {
peah-webrtc 2017/02/27 14:26:03 The filter-based echo path gain cannot be used unt
75 (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k] 77 for (size_t k = 0; k < R2->size(); ++k) {
76 : S2_fallback[k]; 78 (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k]
79 : S2_fallback[k];
80 }
81 } else {
82 for (size_t k = 0; k < R2->size(); ++k) {
83 (*R2)[k] = S2_fallback[k];
84 }
77 } 85 }
86
78 if (blocks_since_last_saturation < kSaturationLeakageBlocks) { 87 if (blocks_since_last_saturation < kSaturationLeakageBlocks) {
79 std::for_each(R2->begin(), R2->end(), 88 std::for_each(R2->begin(), R2->end(),
80 [](float& a) { a *= kSaturationLeakageFactor; }); 89 [](float& a) { a *= kSaturationLeakageFactor; });
81 } 90 }
82 } 91 }
83 92
84 // Estimates the residual echo power based on the linear echo path. 93 // Estimates the residual echo power based on the linear echo path.
85 void ErleBasedPowerEstimate( 94 void ErleBasedPowerEstimate(
86 bool headset_detected, 95 bool headset_detected,
87 const FftBuffer& X_buffer, 96 const FftBuffer& X_buffer,
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after
138 const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay); 147 const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay);
139 (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output 148 (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output
140 ? S2_linear[k] / erle[k] 149 ? S2_linear[k] / erle[k]
141 : std::min(echo_path_gain[k] * X2[k], Y2[k]); 150 : std::min(echo_path_gain[k] * X2[k], Y2[k]);
142 } 151 }
143 } 152 }
144 153
145 } // namespace 154 } // namespace
146 155
147 ResidualEchoEstimator::ResidualEchoEstimator() { 156 ResidualEchoEstimator::ResidualEchoEstimator() {
148 echo_path_gain_.fill(0.f); 157 echo_path_gain_.fill(100.f);
peah-webrtc 2017/02/27 14:26:03 Not important, but more appropriate.
149 } 158 }
150 159
151 ResidualEchoEstimator::~ResidualEchoEstimator() = default; 160 ResidualEchoEstimator::~ResidualEchoEstimator() = default;
152 161
153 void ResidualEchoEstimator::Estimate( 162 void ResidualEchoEstimator::Estimate(
154 bool using_subtractor_output, 163 bool using_subtractor_output,
155 const AecState& aec_state, 164 const AecState& aec_state,
156 const FftBuffer& X_buffer, 165 const FftBuffer& X_buffer,
157 const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2, 166 const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2,
158 const std::array<float, kFftLengthBy2Plus1>& E2_main, 167 const std::array<float, kFftLengthBy2Plus1>& E2_main,
159 const std::array<float, kFftLengthBy2Plus1>& E2_shadow, 168 const std::array<float, kFftLengthBy2Plus1>& E2_shadow,
160 const std::array<float, kFftLengthBy2Plus1>& S2_linear, 169 const std::array<float, kFftLengthBy2Plus1>& S2_linear,
161 const std::array<float, kFftLengthBy2Plus1>& S2_fallback, 170 const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
162 const std::array<float, kFftLengthBy2Plus1>& Y2, 171 const std::array<float, kFftLengthBy2Plus1>& Y2,
163 std::array<float, kFftLengthBy2Plus1>* R2) { 172 std::array<float, kFftLengthBy2Plus1>* R2) {
164 RTC_DCHECK(R2); 173 RTC_DCHECK(R2);
165 const rtc::Optional<size_t>& linear_filter_based_delay = 174 const rtc::Optional<size_t>& linear_filter_based_delay =
166 aec_state.FilterDelay(); 175 aec_state.FilterDelay();
167 176
168 // Update the echo path gain. 177 // Update the echo path gain.
169 if (linear_filter_based_delay) { 178 if (linear_filter_based_delay) {
170 std::copy(H2[*linear_filter_based_delay].begin(), 179 std::copy(H2[*linear_filter_based_delay].begin(),
171 H2[*linear_filter_based_delay].end(), echo_path_gain_.begin()); 180 H2[*linear_filter_based_delay].end(), echo_path_gain_.begin());
181 constexpr float kEchoPathGainHeadroom = 10.f;
182 std::for_each(
183 echo_path_gain_.begin(), echo_path_gain_.end(),
184 [kEchoPathGainHeadroom](float& a) { a *= kEchoPathGainHeadroom; });
peah-webrtc 2017/02/27 14:26:03 Since the filter-based frequency response of the e
172 } 185 }
173 186
174 // Counts the blocks since saturation. 187 // Counts the blocks since saturation.
175 if (aec_state.SaturatedCapture()) { 188 if (aec_state.SaturatedCapture()) {
176 blocks_since_last_saturation_ = 0; 189 blocks_since_last_saturation_ = 0;
177 } else { 190 } else {
178 ++blocks_since_last_saturation_; 191 ++blocks_since_last_saturation_;
179 } 192 }
180 193
181 // Counts the number of active render blocks that are in a row.
peah-webrtc 2017/02/27 14:26:03 This counter was not correctly done.
182 if (aec_state.ActiveRender()) {
183 ++active_render_counter_;
184 }
185
186 const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter(); 194 const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter();
187 195
188 if (aec_state.UsableLinearEstimate()) { 196 if (aec_state.UsableLinearEstimate()) {
189 // Residual echo power estimation when the adaptive filter is reliable. 197 // Residual echo power estimation when the adaptive filter is reliable.
190 RTC_DCHECK(linear_filter_based_delay); 198 RTC_DCHECK(linear_filter_based_delay);
191 ErleBasedPowerEstimate( 199 ErleBasedPowerEstimate(
192 aec_state.HeadsetDetected(), X_buffer, using_subtractor_output, 200 aec_state.HeadsetDetected(), X_buffer, using_subtractor_output,
193 *linear_filter_based_delay, blocks_since_last_saturation_, 201 *linear_filter_based_delay, blocks_since_last_saturation_,
194 aec_state.PoorlyAlignedFilter(), bands_with_reliable_filter, 202 aec_state.PoorlyAlignedFilter(), bands_with_reliable_filter,
195 echo_path_gain_, S2_fallback, S2_linear, Y2, aec_state.Erle(), 203 echo_path_gain_, S2_fallback, S2_linear, Y2, aec_state.Erle(),
196 aec_state.Erl(), R2); 204 aec_state.Erl(), R2);
197 } else if (aec_state.ModelBasedAecFeasible()) { 205 } else if (aec_state.ModelBasedAecFeasible()) {
198 // Residual echo power when the adaptive filter is not reliable but still an 206 // Residual echo power when the adaptive filter is not reliable but still an
199 // external echo path delay is provided (and hence can be estimated). 207 // external echo path delay is provided (and hence can be estimated).
200 RTC_DCHECK(aec_state.ExternalDelay()); 208 RTC_DCHECK(aec_state.ExternalDelay());
201 GainBasedPowerEstimate( 209 GainBasedPowerEstimate(
202 *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_, 210 *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_,
203 bands_with_reliable_filter, echo_path_gain_, S2_fallback, R2); 211 aec_state.ActiveRenderBlocks(), bands_with_reliable_filter,
212 echo_path_gain_, S2_fallback, R2);
204 } else if (aec_state.EchoLeakageDetected()) { 213 } else if (aec_state.EchoLeakageDetected()) {
205 // Residual echo power when an external residual echo detection algorithm 214 // Residual echo power when an external residual echo detection algorithm
206 // has deemed the echo canceller to leak echoes. 215 // has deemed the echo canceller to leak echoes.
207 HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2); 216 HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2);
208 } else { 217 } else {
209 // Residual echo power when none of the other cases are fulfilled. 218 // Residual echo power when none of the other cases are fulfilled.
210 InfiniteErlPowerEstimate(active_render_counter_, 219 InfiniteErlPowerEstimate(aec_state.ActiveRenderBlocks(),
211 blocks_since_last_saturation_, S2_fallback, R2); 220 blocks_since_last_saturation_, S2_fallback, R2);
212 } 221 }
213 } 222 }
214 223
224 void ResidualEchoEstimator::HandleEchoPathChange(
225 const EchoPathVariability& echo_path_variability) {
226 if (echo_path_variability.AudioPathChanged()) {
227 blocks_since_last_saturation_ = 0;
228 echo_path_gain_.fill(100.f);
229 }
230 }
231
215 } // namespace webrtc 232 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698