Index: webrtc/modules/audio_processing/aec3/suppression_gain.cc |
diff --git a/webrtc/modules/audio_processing/aec3/suppression_gain.cc b/webrtc/modules/audio_processing/aec3/suppression_gain.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..34bb9cb3907dacfef38018bebde1ab04e67ebb36 |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/aec3/suppression_gain.cc |
@@ -0,0 +1,282 @@ |
+/* |
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "webrtc/modules/audio_processing/aec3/suppression_gain.h" |
+ |
+#include "webrtc/typedefs.h" |
+#if defined(WEBRTC_ARCH_X86_FAMILY) |
+#include <emmintrin.h> |
+#endif |
+#include <math.h> |
+#include <algorithm> |
+#include <functional> |
+ |
+namespace webrtc { |
+namespace { |
+ |
+constexpr int kNumIterations = 2; |
+constexpr float kEchoMaskingMargin = 1.f / 10.f; |
+constexpr float kBandMaskingFactor = 1.f / 2.f; |
+constexpr float kTimeMaskingFactor = 1.f / 10.f; |
+ |
+} // namespace |
+ |
+namespace aec3 { |
+ |
+#if defined(WEBRTC_ARCH_X86_FAMILY) |
+ |
+// Optimized SSE2 code for the gain computation. |
+// TODO(peah): Add further optimizations, in particular for the divisions. |
+void ComputeGains_SSE2( |
+ const std::array<float, kFftLengthBy2Plus1>& nearend_power, |
+ const std::array<float, kFftLengthBy2Plus1>& residual_echo_power, |
+ const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power, |
+ float strong_nearend_margin, |
+ std::array<float, kFftLengthBy2Minus1>* previous_gain_squared, |
+ std::array<float, kFftLengthBy2Minus1>* previous_masker, |
+ std::array<float, kFftLengthBy2Plus1>* gain) { |
+ std::array<float, kFftLengthBy2Minus1> masker; |
+ std::array<float, kFftLengthBy2Minus1> same_band_masker; |
+ std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power; |
+ std::array<bool, kFftLengthBy2Minus1> strong_nearend; |
+ std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker; |
+ std::array<float, kFftLengthBy2Plus1>* gain_squared = gain; |
+ |
+ // Precompute 1/residual_echo_power. |
+ std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1, |
+ one_by_residual_echo_power.begin(), |
+ [](float a) { return a > 0.f ? 1.f / a : -1.f; }); |
+ |
+ // Precompute indicators for bands with strong nearend. |
+ std::transform( |
+ residual_echo_power.begin() + 1, residual_echo_power.end() - 1, |
+ nearend_power.begin() + 1, strong_nearend.begin(), |
+ [&](float a, float b) { return a <= strong_nearend_margin * b; }); |
+ |
+ // Precompute masker for the same band. |
+ std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1, |
+ previous_masker->begin(), same_band_masker.begin(), |
+ [&](float a, float b) { return a + kTimeMaskingFactor * b; }); |
+ |
+ for (int k = 0; k < kNumIterations; ++k) { |
+ if (k == 0) { |
+ // Add masker from the same band. |
+ std::copy(same_band_masker.begin(), same_band_masker.end(), |
+ masker.begin()); |
+ } else { |
+ // Add masker for neighboring bands. |
+ std::transform(nearend_power.begin(), nearend_power.end(), |
+ gain_squared->begin(), neighboring_bands_masker.begin(), |
+ std::multiplies<float>()); |
+ std::transform(neighboring_bands_masker.begin(), |
+ neighboring_bands_masker.end(), |
+ comfort_noise_power.begin(), |
+ neighboring_bands_masker.begin(), std::plus<float>()); |
+ std::transform( |
+ neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2, |
+ neighboring_bands_masker.begin() + 2, masker.begin(), |
+ [&](float a, float b) { return kBandMaskingFactor * (a + b); }); |
+ |
+ // Add masker from the same band. |
+ std::transform(same_band_masker.begin(), same_band_masker.end(), |
+ masker.begin(), masker.begin(), std::plus<float>()); |
+ } |
+ |
+ // Compute new gain as: |
+ // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) * |
+ // kTimeMaskingFactor |
+ // * kEchoMaskingMargin / residual_echo_power(t,f). |
+ // or |
+ // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) * |
+ // nearend_power(t-1)) * kTimeMaskingFactor + |
+ // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) + |
+ // (G2(t,f-1)*nearend_power(t, f-1) + |
+ // G2(t,f+1)*nearend_power(t, f+1)) * |
+ // kTimeMaskingFactor) * kBandMaskingFactor) |
+ // * kEchoMaskingMargin / residual_echo_power(t,f). |
+ std::transform( |
+ masker.begin(), masker.end(), one_by_residual_echo_power.begin(), |
+ gain_squared->begin() + 1, [&](float a, float b) { |
+ return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f; |
+ }); |
+ |
+ // Limit gain for bands with strong nearend. |
+ std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, |
+ strong_nearend.begin(), gain_squared->begin() + 1, |
+ [](float a, bool b) { return b ? 1.f : a; }); |
+ |
+ // Limit the allowed gain update over time. |
+ std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, |
+ previous_gain_squared->begin(), gain_squared->begin() + 1, |
+ [](float a, float b) { |
+ return b < 0.0001f ? std::min(a, 0.0001f) |
+ : std::min(a, b * 2.f); |
+ }); |
+ |
+ (*gain_squared)[0] = (*gain_squared)[1]; |
+ (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1]; |
+ } |
+ |
+ std::copy(gain_squared->begin() + 1, gain_squared->end() - 1, |
+ previous_gain_squared->begin()); |
+ |
+ std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, |
+ nearend_power.begin() + 1, previous_masker->begin(), |
+ std::multiplies<float>()); |
+ std::transform(previous_masker->begin(), previous_masker->end(), |
+ comfort_noise_power.begin() + 1, previous_masker->begin(), |
+ std::plus<float>()); |
+ |
+ for (size_t k = 0; k < kFftLengthBy2; k += 4) { |
+ __m128 g = _mm_loadu_ps(&(*gain_squared)[k]); |
+ g = _mm_sqrt_ps(g); |
+ _mm_storeu_ps(&(*gain)[k], g); |
+ } |
+ |
+ (*gain)[kFftLengthBy2] = sqrtf((*gain)[kFftLengthBy2]); |
+} |
+ |
+#endif |
+ |
+void ComputeGains( |
+ const std::array<float, kFftLengthBy2Plus1>& nearend_power, |
+ const std::array<float, kFftLengthBy2Plus1>& residual_echo_power, |
+ const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power, |
+ float strong_nearend_margin, |
+ std::array<float, kFftLengthBy2Minus1>* previous_gain_squared, |
+ std::array<float, kFftLengthBy2Minus1>* previous_masker, |
+ std::array<float, kFftLengthBy2Plus1>* gain) { |
+ std::array<float, kFftLengthBy2Minus1> masker; |
+ std::array<float, kFftLengthBy2Minus1> same_band_masker; |
+ std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power; |
+ std::array<bool, kFftLengthBy2Minus1> strong_nearend; |
+ std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker; |
+ std::array<float, kFftLengthBy2Plus1>* gain_squared = gain; |
+ |
+ // Precompute 1/residual_echo_power. |
+ std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1, |
+ one_by_residual_echo_power.begin(), |
+ [](float a) { return a > 0.f ? 1.f / a : -1.f; }); |
+ |
+ // Precompute indicators for bands with strong nearend. |
+ std::transform( |
+ residual_echo_power.begin() + 1, residual_echo_power.end() - 1, |
+ nearend_power.begin() + 1, strong_nearend.begin(), |
+ [&](float a, float b) { return a <= strong_nearend_margin * b; }); |
+ |
+ // Precompute masker for the same band. |
+ std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1, |
+ previous_masker->begin(), same_band_masker.begin(), |
+ [&](float a, float b) { return a + kTimeMaskingFactor * b; }); |
+ |
+ for (int k = 0; k < kNumIterations; ++k) { |
+ if (k == 0) { |
+ // Add masker from the same band. |
+ std::copy(same_band_masker.begin(), same_band_masker.end(), |
+ masker.begin()); |
+ } else { |
+ // Add masker for neightboring bands. |
+ std::transform(nearend_power.begin(), nearend_power.end(), |
+ gain_squared->begin(), neighboring_bands_masker.begin(), |
+ std::multiplies<float>()); |
+ std::transform(neighboring_bands_masker.begin(), |
+ neighboring_bands_masker.end(), |
+ comfort_noise_power.begin(), |
+ neighboring_bands_masker.begin(), std::plus<float>()); |
+ std::transform( |
+ neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2, |
+ neighboring_bands_masker.begin() + 2, masker.begin(), |
+ [&](float a, float b) { return kBandMaskingFactor * (a + b); }); |
+ |
+ // Add masker from the same band. |
+ std::transform(same_band_masker.begin(), same_band_masker.end(), |
+ masker.begin(), masker.begin(), std::plus<float>()); |
+ } |
+ |
+ // Compute new gain as: |
+ // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) * |
+ // kTimeMaskingFactor |
+ // * kEchoMaskingMargin / residual_echo_power(t,f). |
+ // or |
+ // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) * |
+ // nearend_power(t-1)) * kTimeMaskingFactor + |
+ // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) + |
+ // (G2(t,f-1)*nearend_power(t, f-1) + |
+ // G2(t,f+1)*nearend_power(t, f+1)) * |
+ // kTimeMaskingFactor) * kBandMaskingFactor) |
+ // * kEchoMaskingMargin / residual_echo_power(t,f). |
+ std::transform( |
+ masker.begin(), masker.end(), one_by_residual_echo_power.begin(), |
+ gain_squared->begin() + 1, [&](float a, float b) { |
+ return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f; |
+ }); |
+ |
+ // Limit gain for bands with strong nearend. |
+ std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, |
+ strong_nearend.begin(), gain_squared->begin() + 1, |
+ [](float a, bool b) { return b ? 1.f : a; }); |
+ |
+ // Limit the allowed gain update over time. |
+ std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, |
+ previous_gain_squared->begin(), gain_squared->begin() + 1, |
+ [](float a, float b) { |
+ return b < 0.0001f ? std::min(a, 0.0001f) |
+ : std::min(a, b * 2.f); |
+ }); |
+ |
+ (*gain_squared)[0] = (*gain_squared)[1]; |
+ (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1]; |
+ } |
+ |
+ std::copy(gain_squared->begin() + 1, gain_squared->end() - 1, |
+ previous_gain_squared->begin()); |
+ |
+ std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, |
+ nearend_power.begin() + 1, previous_masker->begin(), |
+ std::multiplies<float>()); |
+ std::transform(previous_masker->begin(), previous_masker->end(), |
+ comfort_noise_power.begin() + 1, previous_masker->begin(), |
+ std::plus<float>()); |
+ |
+ std::transform(gain_squared->begin(), gain_squared->end(), gain->begin(), |
+ [](float a) { return sqrtf(a); }); |
+} |
+ |
+} // namespace aec3 |
+ |
+SuppressionGain::SuppressionGain(Aec3Optimization optimization) |
+ : optimization_(optimization) { |
+ previous_gain_squared_.fill(1.f); |
+ previous_masker_.fill(0.f); |
+} |
+ |
+void SuppressionGain::GetGain( |
+ const std::array<float, kFftLengthBy2Plus1>& nearend_power, |
+ const std::array<float, kFftLengthBy2Plus1>& residual_echo_power, |
+ const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power, |
+ float strong_nearend_margin, |
+ std::array<float, kFftLengthBy2Plus1>* gain) { |
+ RTC_DCHECK(gain); |
+ switch (optimization_) { |
+#if defined(WEBRTC_ARCH_X86_FAMILY) |
+ case Aec3Optimization::kSse2: |
+ aec3::ComputeGains_SSE2(nearend_power, residual_echo_power, |
+ comfort_noise_power, strong_nearend_margin, |
+ &previous_gain_squared_, &previous_masker_, gain); |
+ break; |
+#endif |
+ default: |
+ aec3::ComputeGains(nearend_power, residual_echo_power, |
+ comfort_noise_power, strong_nearend_margin, |
+ &previous_gain_squared_, &previous_masker_, gain); |
+ } |
+} |
+ |
+} // namespace webrtc |