Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(592)

Side by Side Diff: webrtc/modules/audio_processing/aec3/suppression_gain.cc

Issue 2678423005: Finalization of the first version of EchoCanceller 3 (Closed)
Patch Set: Fixed compilation error Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
12
13 #include "webrtc/typedefs.h"
14 #if defined(WEBRTC_ARCH_X86_FAMILY)
15 #include <emmintrin.h>
16 #endif
17 #include <math.h>
18 #include <algorithm>
19 #include <functional>
20
21 namespace webrtc {
22 namespace {
23
24 constexpr int kNumIterations = 2;
25 constexpr float kEchoMaskingMargin = 1.f / 10.f;
26 constexpr float kBandMaskingFactor = 1.f / 2.f;
27 constexpr float kTimeMaskingFactor = 1.f / 10.f;
28
29 } // namespace
30
31 namespace aec3 {
32
33 #if defined(WEBRTC_ARCH_X86_FAMILY)
34
35 // Optimized SSE2 code for the gain computation.
36 // TODO(peah): Add further optimizations, in particular for the divisions.
37 void ComputeGains_SSE2(
38 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
39 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
40 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
41 float strong_nearend_margin,
42 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
43 std::array<float, kFftLengthBy2Minus1>* previous_masker,
44 std::array<float, kFftLengthBy2Plus1>* gain) {
45 std::array<float, kFftLengthBy2Minus1> masker;
46 std::array<float, kFftLengthBy2Minus1> same_band_masker;
47 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
48 std::array<bool, kFftLengthBy2Minus1> strong_nearend;
49 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
50 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
51
52 // Precompute 1/residual_echo_power.
53 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
54 one_by_residual_echo_power.begin(),
55 [](float a) { return a > 0.f ? 1.f / a : -1.f; });
56
57 // Precompute indicators for bands with strong nearend.
58 std::transform(
59 residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
60 nearend_power.begin() + 1, strong_nearend.begin(),
61 [&](float a, float b) { return a <= strong_nearend_margin * b; });
62
63 // Precompute masker for the same band.
64 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
65 previous_masker->begin(), same_band_masker.begin(),
66 [&](float a, float b) { return a + kTimeMaskingFactor * b; });
67
68 for (int k = 0; k < kNumIterations; ++k) {
69 if (k == 0) {
70 // Add masker from the same band.
71 std::copy(same_band_masker.begin(), same_band_masker.end(),
72 masker.begin());
73 } else {
74 // Add masker for neighboring bands.
75 std::transform(nearend_power.begin(), nearend_power.end(),
76 gain_squared->begin(), neighboring_bands_masker.begin(),
77 std::multiplies<float>());
78 std::transform(neighboring_bands_masker.begin(),
79 neighboring_bands_masker.end(),
80 comfort_noise_power.begin(),
81 neighboring_bands_masker.begin(), std::plus<float>());
82 std::transform(
83 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
84 neighboring_bands_masker.begin() + 2, masker.begin(),
85 [&](float a, float b) { return kBandMaskingFactor * (a + b); });
86
87 // Add masker from the same band.
88 std::transform(same_band_masker.begin(), same_band_masker.end(),
89 masker.begin(), masker.begin(), std::plus<float>());
90 }
91
92 // Compute new gain as:
93 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
94 // kTimeMaskingFactor
95 // * kEchoMaskingMargin / residual_echo_power(t,f).
96 // or
97 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
98 // nearend_power(t-1)) * kTimeMaskingFactor +
99 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
100 // (G2(t,f-1)*nearend_power(t, f-1) +
101 // G2(t,f+1)*nearend_power(t, f+1)) *
102 // kTimeMaskingFactor) * kBandMaskingFactor)
103 // * kEchoMaskingMargin / residual_echo_power(t,f).
104 std::transform(
105 masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
106 gain_squared->begin() + 1, [&](float a, float b) {
107 return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
108 });
109
110 // Limit gain for bands with strong nearend.
111 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
112 strong_nearend.begin(), gain_squared->begin() + 1,
113 [](float a, bool b) { return b ? 1.f : a; });
114
115 // Limit the allowed gain update over time.
116 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
117 previous_gain_squared->begin(), gain_squared->begin() + 1,
118 [](float a, float b) {
119 return b < 0.0001f ? std::min(a, 0.0001f)
120 : std::min(a, b * 2.f);
121 });
122
123 (*gain_squared)[0] = (*gain_squared)[1];
124 (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1];
125 }
126
127 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
128 previous_gain_squared->begin());
129
130 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
131 nearend_power.begin() + 1, previous_masker->begin(),
132 std::multiplies<float>());
133 std::transform(previous_masker->begin(), previous_masker->end(),
134 comfort_noise_power.begin() + 1, previous_masker->begin(),
135 std::plus<float>());
136
137 for (size_t k = 0; k < kFftLengthBy2; k += 4) {
138 __m128 g = _mm_loadu_ps(&(*gain_squared)[k]);
139 g = _mm_sqrt_ps(g);
140 _mm_storeu_ps(&(*gain)[k], g);
141 }
142
143 (*gain)[kFftLengthBy2] = sqrtf((*gain)[kFftLengthBy2]);
144 }
145
146 #endif
147
148 void ComputeGains(
149 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
150 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
151 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
152 float strong_nearend_margin,
153 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
154 std::array<float, kFftLengthBy2Minus1>* previous_masker,
155 std::array<float, kFftLengthBy2Plus1>* gain) {
156 std::array<float, kFftLengthBy2Minus1> masker;
157 std::array<float, kFftLengthBy2Minus1> same_band_masker;
158 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
159 std::array<bool, kFftLengthBy2Minus1> strong_nearend;
160 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
161 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
162
163 // Precompute 1/residual_echo_power.
164 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
165 one_by_residual_echo_power.begin(),
166 [](float a) { return a > 0.f ? 1.f / a : -1.f; });
167
168 // Precompute indicators for bands with strong nearend.
169 std::transform(
170 residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
171 nearend_power.begin() + 1, strong_nearend.begin(),
172 [&](float a, float b) { return a <= strong_nearend_margin * b; });
173
174 // Precompute masker for the same band.
175 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
176 previous_masker->begin(), same_band_masker.begin(),
177 [&](float a, float b) { return a + kTimeMaskingFactor * b; });
178
179 for (int k = 0; k < kNumIterations; ++k) {
180 if (k == 0) {
181 // Add masker from the same band.
182 std::copy(same_band_masker.begin(), same_band_masker.end(),
183 masker.begin());
184 } else {
185 // Add masker for neightboring bands.
186 std::transform(nearend_power.begin(), nearend_power.end(),
187 gain_squared->begin(), neighboring_bands_masker.begin(),
188 std::multiplies<float>());
189 std::transform(neighboring_bands_masker.begin(),
190 neighboring_bands_masker.end(),
191 comfort_noise_power.begin(),
192 neighboring_bands_masker.begin(), std::plus<float>());
193 std::transform(
194 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
195 neighboring_bands_masker.begin() + 2, masker.begin(),
196 [&](float a, float b) { return kBandMaskingFactor * (a + b); });
197
198 // Add masker from the same band.
199 std::transform(same_band_masker.begin(), same_band_masker.end(),
200 masker.begin(), masker.begin(), std::plus<float>());
201 }
202
203 // Compute new gain as:
204 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
205 // kTimeMaskingFactor
206 // * kEchoMaskingMargin / residual_echo_power(t,f).
207 // or
208 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
209 // nearend_power(t-1)) * kTimeMaskingFactor +
210 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
211 // (G2(t,f-1)*nearend_power(t, f-1) +
212 // G2(t,f+1)*nearend_power(t, f+1)) *
213 // kTimeMaskingFactor) * kBandMaskingFactor)
214 // * kEchoMaskingMargin / residual_echo_power(t,f).
215 std::transform(
216 masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
217 gain_squared->begin() + 1, [&](float a, float b) {
218 return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
219 });
220
221 // Limit gain for bands with strong nearend.
222 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
223 strong_nearend.begin(), gain_squared->begin() + 1,
224 [](float a, bool b) { return b ? 1.f : a; });
225
226 // Limit the allowed gain update over time.
227 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
228 previous_gain_squared->begin(), gain_squared->begin() + 1,
229 [](float a, float b) {
230 return b < 0.0001f ? std::min(a, 0.0001f)
231 : std::min(a, b * 2.f);
232 });
233
234 (*gain_squared)[0] = (*gain_squared)[1];
235 (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1];
236 }
237
238 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
239 previous_gain_squared->begin());
240
241 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
242 nearend_power.begin() + 1, previous_masker->begin(),
243 std::multiplies<float>());
244 std::transform(previous_masker->begin(), previous_masker->end(),
245 comfort_noise_power.begin() + 1, previous_masker->begin(),
246 std::plus<float>());
247
248 std::transform(gain_squared->begin(), gain_squared->end(), gain->begin(),
249 [](float a) { return sqrtf(a); });
250 }
251
252 } // namespace aec3
253
254 SuppressionGain::SuppressionGain(Aec3Optimization optimization)
255 : optimization_(optimization) {
256 previous_gain_squared_.fill(1.f);
257 previous_masker_.fill(0.f);
258 }
259
260 void SuppressionGain::GetGain(
261 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
262 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
263 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
264 float strong_nearend_margin,
265 std::array<float, kFftLengthBy2Plus1>* gain) {
266 RTC_DCHECK(gain);
267 switch (optimization_) {
268 #if defined(WEBRTC_ARCH_X86_FAMILY)
269 case Aec3Optimization::kSse2:
270 aec3::ComputeGains_SSE2(nearend_power, residual_echo_power,
271 comfort_noise_power, strong_nearend_margin,
272 &previous_gain_squared_, &previous_masker_, gain);
273 break;
274 #endif
275 default:
276 aec3::ComputeGains(nearend_power, residual_echo_power,
277 comfort_noise_power, strong_nearend_margin,
278 &previous_gain_squared_, &previous_masker_, gain);
279 }
280 }
281
282 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698