Index: webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc |
diff --git a/webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc b/webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..92b2f9e297a533ae4b5a3d7fd6f29f336cbf1b8e |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc |
@@ -0,0 +1,287 @@ |
+/* |
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "webrtc/modules/audio_processing/aec3/main_filter_update_gain.h" |
+ |
+#include <algorithm> |
+#include <numeric> |
+#include <string> |
+ |
+#include "webrtc/base/random.h" |
+#include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h" |
+#include "webrtc/modules/audio_processing/aec3/aec_state.h" |
+#include "webrtc/modules/audio_processing/aec3/fft_buffer.h" |
+#include "webrtc/modules/audio_processing/aec3/render_signal_analyzer.h" |
+#include "webrtc/modules/audio_processing/aec3/shadow_filter_update_gain.h" |
+#include "webrtc/modules/audio_processing/aec3/subtractor_output.h" |
+#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
+#include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h" |
+#include "webrtc/test/gtest.h" |
+ |
+namespace webrtc { |
+namespace { |
+ |
+// Method for performing the simulations needed to test the main filter update |
+// gain functionality. |
+void RunFilterUpdateTest(int num_blocks_to_process, |
+ size_t delay_samples, |
+ const std::vector<int>& blocks_with_echo_path_changes, |
+ const std::vector<int>& blocks_with_saturation, |
+ bool use_silent_render_in_second_half, |
+ std::array<float, kBlockSize>* e_last_block, |
+ std::array<float, kBlockSize>* y_last_block, |
+ FftData* G_last_block) { |
+ ApmDataDumper data_dumper(42); |
+ AdaptiveFirFilter main_filter(9, true, DetectOptimization(), &data_dumper); |
+ AdaptiveFirFilter shadow_filter(9, true, DetectOptimization(), &data_dumper); |
+ Aec3Fft fft; |
+ FftBuffer X_buffer(Aec3Optimization::kNone, main_filter.SizePartitions(), |
+ std::vector<size_t>(1, main_filter.SizePartitions())); |
+ std::array<float, kBlockSize> x_old; |
+ x_old.fill(0.f); |
+ ShadowFilterUpdateGain shadow_gain; |
+ MainFilterUpdateGain main_gain; |
+ Random random_generator(42U); |
+ std::vector<float> x(kBlockSize, 0.f); |
+ std::vector<float> y(kBlockSize, 0.f); |
+ AecState aec_state; |
+ RenderSignalAnalyzer render_signal_analyzer; |
+ FftData X; |
+ std::array<float, kFftLength> s; |
+ FftData S; |
+ FftData G; |
+ SubtractorOutput output; |
+ output.Reset(); |
+ FftData& E_main = output.E_main; |
+ FftData& E_shadow = output.E_shadow; |
+ std::array<float, kFftLengthBy2Plus1> Y2; |
+ std::array<float, kFftLengthBy2Plus1>& E2_main = output.E2_main; |
+ std::array<float, kFftLengthBy2Plus1>& E2_shadow = output.E2_shadow; |
+ std::array<float, kBlockSize>& e_main = output.e_main; |
+ std::array<float, kBlockSize>& e_shadow = output.e_shadow; |
+ Y2.fill(0.f); |
+ |
+ constexpr float kScale = 1.0f / kFftLengthBy2; |
+ |
+ DelayBuffer<float> delay_buffer(delay_samples); |
+ for (int k = 0; k < num_blocks_to_process; ++k) { |
+ // Handle echo path changes. |
+ if (std::find(blocks_with_echo_path_changes.begin(), |
+ blocks_with_echo_path_changes.end(), |
+ k) != blocks_with_echo_path_changes.end()) { |
+ main_filter.HandleEchoPathChange(); |
+ } |
+ |
+ // Handle saturation. |
+ const bool saturation = |
+ std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(), |
+ k) != blocks_with_saturation.end(); |
+ |
+ // Create the render signal. |
+ if (use_silent_render_in_second_half && k > num_blocks_to_process / 2) { |
+ std::fill(x.begin(), x.end(), 0.f); |
+ } else { |
+ RandomizeSampleVector(&random_generator, x); |
+ } |
+ delay_buffer.Delay(x, y); |
+ fft.PaddedFft(x, x_old, &X); |
+ X_buffer.Insert(X); |
+ render_signal_analyzer.Update(X_buffer, aec_state.FilterDelay()); |
+ |
+ // Apply the main filter. |
+ main_filter.Filter(X_buffer, &S); |
+ fft.Ifft(S, &s); |
+ std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2, |
+ e_main.begin(), |
+ [&](float a, float b) { return a - b * kScale; }); |
+ std::for_each(e_main.begin(), e_main.end(), [](float& a) { |
+ a = std::max(std::min(a, 32767.0f), -32768.0f); |
+ }); |
+ fft.ZeroPaddedFft(e_main, &E_main); |
+ |
+ // Apply the shadow filter. |
+ shadow_filter.Filter(X_buffer, &S); |
+ fft.Ifft(S, &s); |
+ std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2, |
+ e_shadow.begin(), |
+ [&](float a, float b) { return a - b * kScale; }); |
+ std::for_each(e_shadow.begin(), e_shadow.end(), [](float& a) { |
+ a = std::max(std::min(a, 32767.0f), -32768.0f); |
+ }); |
+ fft.ZeroPaddedFft(e_shadow, &E_shadow); |
+ |
+ // Compute spectra for future use. |
+ E_main.Spectrum(Aec3Optimization::kNone, &output.E2_main); |
+ E_shadow.Spectrum(Aec3Optimization::kNone, &output.E2_shadow); |
+ |
+ // Adapt the shadow filter. |
+ shadow_gain.Compute(X_buffer, render_signal_analyzer, E_shadow, |
+ shadow_filter.SizePartitions(), saturation, &G); |
+ shadow_filter.Adapt(X_buffer, G); |
+ |
+ // Adapt the main filter |
+ main_gain.Compute(X_buffer, render_signal_analyzer, output, main_filter, |
+ saturation, &G); |
+ main_filter.Adapt(X_buffer, G); |
+ |
+ // Update the delay. |
+ aec_state.Update(main_filter.FilterFrequencyResponse(), |
+ rtc::Optional<size_t>(), X_buffer, E2_main, E2_shadow, Y2, |
+ x, EchoPathVariability(false, false), false); |
+ } |
+ |
+ std::copy(e_main.begin(), e_main.end(), e_last_block->begin()); |
+ std::copy(y.begin(), y.end(), y_last_block->begin()); |
+ std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin()); |
+ std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin()); |
+} |
+ |
+std::string ProduceDebugText(size_t delay) { |
+ std::ostringstream ss; |
+ ss << "Delay: " << delay; |
+ return ss.str(); |
+} |
+ |
+} // namespace |
+ |
+#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
+ |
+// Verifies that the check for non-null output gain parameter works. |
+TEST(MainFilterUpdateGain, NullDataOutputGain) { |
+ ApmDataDumper data_dumper(42); |
+ AdaptiveFirFilter filter(9, true, DetectOptimization(), &data_dumper); |
+ FftBuffer X_buffer(Aec3Optimization::kNone, filter.SizePartitions(), |
+ std::vector<size_t>(1, filter.SizePartitions())); |
+ RenderSignalAnalyzer analyzer; |
+ SubtractorOutput output; |
+ MainFilterUpdateGain gain; |
+ EXPECT_DEATH(gain.Compute(X_buffer, analyzer, output, filter, false, nullptr), |
+ ""); |
+} |
+ |
+#endif |
+ |
+// Verifies that the gain formed causes the filter using it to converge. |
+TEST(MainFilterUpdateGain, GainCausesFilterToConverge) { |
+ std::vector<int> blocks_with_echo_path_changes; |
+ std::vector<int> blocks_with_saturation; |
+ for (size_t delay_samples : {0, 64, 150, 200, 301}) { |
+ SCOPED_TRACE(ProduceDebugText(delay_samples)); |
+ |
+ std::array<float, kBlockSize> e; |
+ std::array<float, kBlockSize> y; |
+ FftData G; |
+ |
+ RunFilterUpdateTest(500, delay_samples, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G); |
+ |
+ // Verify that the main filter is able to perform well. |
+ EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f), |
+ std::inner_product(y.begin(), y.end(), y.begin(), 0.f)); |
+ } |
+} |
+ |
+// Verifies that the magnitude of the gain on average decreases for a |
+// persistently exciting signal. |
+TEST(MainFilterUpdateGain, DecreasingGain) { |
+ std::vector<int> blocks_with_echo_path_changes; |
+ std::vector<int> blocks_with_saturation; |
+ |
+ std::array<float, kBlockSize> e; |
+ std::array<float, kBlockSize> y; |
+ FftData G_a; |
+ FftData G_b; |
+ FftData G_c; |
+ std::array<float, kFftLengthBy2Plus1> G_a_power; |
+ std::array<float, kFftLengthBy2Plus1> G_b_power; |
+ std::array<float, kFftLengthBy2Plus1> G_c_power; |
+ |
+ RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G_a); |
+ RunFilterUpdateTest(200, 65, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G_b); |
+ RunFilterUpdateTest(300, 65, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G_c); |
+ |
+ G_a.Spectrum(Aec3Optimization::kNone, &G_a_power); |
+ G_b.Spectrum(Aec3Optimization::kNone, &G_b_power); |
+ G_c.Spectrum(Aec3Optimization::kNone, &G_c_power); |
+ |
+ EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
+ std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
+ |
+ EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.), |
+ std::accumulate(G_c_power.begin(), G_c_power.end(), 0.)); |
+} |
+ |
+// Verifies that the gain is zero when there is saturation and that the internal |
+// error estimates cause the gain to increase after a period of saturation. |
+TEST(MainFilterUpdateGain, SaturationBehavior) { |
+ std::vector<int> blocks_with_echo_path_changes; |
+ std::vector<int> blocks_with_saturation; |
+ for (int k = 99; k < 200; ++k) { |
+ blocks_with_saturation.push_back(k); |
+ } |
+ |
+ std::array<float, kBlockSize> e; |
+ std::array<float, kBlockSize> y; |
+ FftData G_a; |
+ FftData G_b; |
+ FftData G_a_ref; |
+ G_a_ref.re.fill(0.f); |
+ G_a_ref.im.fill(0.f); |
+ |
+ std::array<float, kFftLengthBy2Plus1> G_a_power; |
+ std::array<float, kFftLengthBy2Plus1> G_b_power; |
+ |
+ RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G_a); |
+ |
+ EXPECT_EQ(G_a_ref.re, G_a.re); |
+ EXPECT_EQ(G_a_ref.im, G_a.im); |
+ |
+ RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G_a); |
+ RunFilterUpdateTest(201, 65, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G_b); |
+ |
+ G_a.Spectrum(Aec3Optimization::kNone, &G_a_power); |
+ G_b.Spectrum(Aec3Optimization::kNone, &G_b_power); |
+ |
+ EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
+ std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
+} |
+ |
+// Verifies that the gain increases after an echo path change. |
+TEST(MainFilterUpdateGain, EchoPathChangeBehavior) { |
+ std::vector<int> blocks_with_echo_path_changes; |
+ std::vector<int> blocks_with_saturation; |
+ blocks_with_echo_path_changes.push_back(99); |
+ |
+ std::array<float, kBlockSize> e; |
+ std::array<float, kBlockSize> y; |
+ FftData G_a; |
+ FftData G_b; |
+ std::array<float, kFftLengthBy2Plus1> G_a_power; |
+ std::array<float, kFftLengthBy2Plus1> G_b_power; |
+ |
+ RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G_a); |
+ RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes, |
+ blocks_with_saturation, false, &e, &y, &G_b); |
+ |
+ G_a.Spectrum(Aec3Optimization::kNone, &G_a_power); |
+ G_b.Spectrum(Aec3Optimization::kNone, &G_b_power); |
+ |
+ EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
+ std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
+} |
+ |
+} // namespace webrtc |