| Index: webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc b/webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..92b2f9e297a533ae4b5a3d7fd6f29f336cbf1b8e
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc
|
| @@ -0,0 +1,287 @@
|
| +/*
|
| + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/audio_processing/aec3/main_filter_update_gain.h"
|
| +
|
| +#include <algorithm>
|
| +#include <numeric>
|
| +#include <string>
|
| +
|
| +#include "webrtc/base/random.h"
|
| +#include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h"
|
| +#include "webrtc/modules/audio_processing/aec3/aec_state.h"
|
| +#include "webrtc/modules/audio_processing/aec3/fft_buffer.h"
|
| +#include "webrtc/modules/audio_processing/aec3/render_signal_analyzer.h"
|
| +#include "webrtc/modules/audio_processing/aec3/shadow_filter_update_gain.h"
|
| +#include "webrtc/modules/audio_processing/aec3/subtractor_output.h"
|
| +#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
|
| +#include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h"
|
| +#include "webrtc/test/gtest.h"
|
| +
|
| +namespace webrtc {
|
| +namespace {
|
| +
|
| +// Method for performing the simulations needed to test the main filter update
|
| +// gain functionality.
|
| +void RunFilterUpdateTest(int num_blocks_to_process,
|
| + size_t delay_samples,
|
| + const std::vector<int>& blocks_with_echo_path_changes,
|
| + const std::vector<int>& blocks_with_saturation,
|
| + bool use_silent_render_in_second_half,
|
| + std::array<float, kBlockSize>* e_last_block,
|
| + std::array<float, kBlockSize>* y_last_block,
|
| + FftData* G_last_block) {
|
| + ApmDataDumper data_dumper(42);
|
| + AdaptiveFirFilter main_filter(9, true, DetectOptimization(), &data_dumper);
|
| + AdaptiveFirFilter shadow_filter(9, true, DetectOptimization(), &data_dumper);
|
| + Aec3Fft fft;
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, main_filter.SizePartitions(),
|
| + std::vector<size_t>(1, main_filter.SizePartitions()));
|
| + std::array<float, kBlockSize> x_old;
|
| + x_old.fill(0.f);
|
| + ShadowFilterUpdateGain shadow_gain;
|
| + MainFilterUpdateGain main_gain;
|
| + Random random_generator(42U);
|
| + std::vector<float> x(kBlockSize, 0.f);
|
| + std::vector<float> y(kBlockSize, 0.f);
|
| + AecState aec_state;
|
| + RenderSignalAnalyzer render_signal_analyzer;
|
| + FftData X;
|
| + std::array<float, kFftLength> s;
|
| + FftData S;
|
| + FftData G;
|
| + SubtractorOutput output;
|
| + output.Reset();
|
| + FftData& E_main = output.E_main;
|
| + FftData& E_shadow = output.E_shadow;
|
| + std::array<float, kFftLengthBy2Plus1> Y2;
|
| + std::array<float, kFftLengthBy2Plus1>& E2_main = output.E2_main;
|
| + std::array<float, kFftLengthBy2Plus1>& E2_shadow = output.E2_shadow;
|
| + std::array<float, kBlockSize>& e_main = output.e_main;
|
| + std::array<float, kBlockSize>& e_shadow = output.e_shadow;
|
| + Y2.fill(0.f);
|
| +
|
| + constexpr float kScale = 1.0f / kFftLengthBy2;
|
| +
|
| + DelayBuffer<float> delay_buffer(delay_samples);
|
| + for (int k = 0; k < num_blocks_to_process; ++k) {
|
| + // Handle echo path changes.
|
| + if (std::find(blocks_with_echo_path_changes.begin(),
|
| + blocks_with_echo_path_changes.end(),
|
| + k) != blocks_with_echo_path_changes.end()) {
|
| + main_filter.HandleEchoPathChange();
|
| + }
|
| +
|
| + // Handle saturation.
|
| + const bool saturation =
|
| + std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(),
|
| + k) != blocks_with_saturation.end();
|
| +
|
| + // Create the render signal.
|
| + if (use_silent_render_in_second_half && k > num_blocks_to_process / 2) {
|
| + std::fill(x.begin(), x.end(), 0.f);
|
| + } else {
|
| + RandomizeSampleVector(&random_generator, x);
|
| + }
|
| + delay_buffer.Delay(x, y);
|
| + fft.PaddedFft(x, x_old, &X);
|
| + X_buffer.Insert(X);
|
| + render_signal_analyzer.Update(X_buffer, aec_state.FilterDelay());
|
| +
|
| + // Apply the main filter.
|
| + main_filter.Filter(X_buffer, &S);
|
| + fft.Ifft(S, &s);
|
| + std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2,
|
| + e_main.begin(),
|
| + [&](float a, float b) { return a - b * kScale; });
|
| + std::for_each(e_main.begin(), e_main.end(), [](float& a) {
|
| + a = std::max(std::min(a, 32767.0f), -32768.0f);
|
| + });
|
| + fft.ZeroPaddedFft(e_main, &E_main);
|
| +
|
| + // Apply the shadow filter.
|
| + shadow_filter.Filter(X_buffer, &S);
|
| + fft.Ifft(S, &s);
|
| + std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2,
|
| + e_shadow.begin(),
|
| + [&](float a, float b) { return a - b * kScale; });
|
| + std::for_each(e_shadow.begin(), e_shadow.end(), [](float& a) {
|
| + a = std::max(std::min(a, 32767.0f), -32768.0f);
|
| + });
|
| + fft.ZeroPaddedFft(e_shadow, &E_shadow);
|
| +
|
| + // Compute spectra for future use.
|
| + E_main.Spectrum(Aec3Optimization::kNone, &output.E2_main);
|
| + E_shadow.Spectrum(Aec3Optimization::kNone, &output.E2_shadow);
|
| +
|
| + // Adapt the shadow filter.
|
| + shadow_gain.Compute(X_buffer, render_signal_analyzer, E_shadow,
|
| + shadow_filter.SizePartitions(), saturation, &G);
|
| + shadow_filter.Adapt(X_buffer, G);
|
| +
|
| + // Adapt the main filter
|
| + main_gain.Compute(X_buffer, render_signal_analyzer, output, main_filter,
|
| + saturation, &G);
|
| + main_filter.Adapt(X_buffer, G);
|
| +
|
| + // Update the delay.
|
| + aec_state.Update(main_filter.FilterFrequencyResponse(),
|
| + rtc::Optional<size_t>(), X_buffer, E2_main, E2_shadow, Y2,
|
| + x, EchoPathVariability(false, false), false);
|
| + }
|
| +
|
| + std::copy(e_main.begin(), e_main.end(), e_last_block->begin());
|
| + std::copy(y.begin(), y.end(), y_last_block->begin());
|
| + std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin());
|
| + std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin());
|
| +}
|
| +
|
| +std::string ProduceDebugText(size_t delay) {
|
| + std::ostringstream ss;
|
| + ss << "Delay: " << delay;
|
| + return ss.str();
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
|
| +
|
| +// Verifies that the check for non-null output gain parameter works.
|
| +TEST(MainFilterUpdateGain, NullDataOutputGain) {
|
| + ApmDataDumper data_dumper(42);
|
| + AdaptiveFirFilter filter(9, true, DetectOptimization(), &data_dumper);
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, filter.SizePartitions(),
|
| + std::vector<size_t>(1, filter.SizePartitions()));
|
| + RenderSignalAnalyzer analyzer;
|
| + SubtractorOutput output;
|
| + MainFilterUpdateGain gain;
|
| + EXPECT_DEATH(gain.Compute(X_buffer, analyzer, output, filter, false, nullptr),
|
| + "");
|
| +}
|
| +
|
| +#endif
|
| +
|
| +// Verifies that the gain formed causes the filter using it to converge.
|
| +TEST(MainFilterUpdateGain, GainCausesFilterToConverge) {
|
| + std::vector<int> blocks_with_echo_path_changes;
|
| + std::vector<int> blocks_with_saturation;
|
| + for (size_t delay_samples : {0, 64, 150, 200, 301}) {
|
| + SCOPED_TRACE(ProduceDebugText(delay_samples));
|
| +
|
| + std::array<float, kBlockSize> e;
|
| + std::array<float, kBlockSize> y;
|
| + FftData G;
|
| +
|
| + RunFilterUpdateTest(500, delay_samples, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G);
|
| +
|
| + // Verify that the main filter is able to perform well.
|
| + EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
|
| + std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
|
| + }
|
| +}
|
| +
|
| +// Verifies that the magnitude of the gain on average decreases for a
|
| +// persistently exciting signal.
|
| +TEST(MainFilterUpdateGain, DecreasingGain) {
|
| + std::vector<int> blocks_with_echo_path_changes;
|
| + std::vector<int> blocks_with_saturation;
|
| +
|
| + std::array<float, kBlockSize> e;
|
| + std::array<float, kBlockSize> y;
|
| + FftData G_a;
|
| + FftData G_b;
|
| + FftData G_c;
|
| + std::array<float, kFftLengthBy2Plus1> G_a_power;
|
| + std::array<float, kFftLengthBy2Plus1> G_b_power;
|
| + std::array<float, kFftLengthBy2Plus1> G_c_power;
|
| +
|
| + RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G_a);
|
| + RunFilterUpdateTest(200, 65, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G_b);
|
| + RunFilterUpdateTest(300, 65, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G_c);
|
| +
|
| + G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
|
| + G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
|
| + G_c.Spectrum(Aec3Optimization::kNone, &G_c_power);
|
| +
|
| + EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
|
| + std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
|
| +
|
| + EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.),
|
| + std::accumulate(G_c_power.begin(), G_c_power.end(), 0.));
|
| +}
|
| +
|
| +// Verifies that the gain is zero when there is saturation and that the internal
|
| +// error estimates cause the gain to increase after a period of saturation.
|
| +TEST(MainFilterUpdateGain, SaturationBehavior) {
|
| + std::vector<int> blocks_with_echo_path_changes;
|
| + std::vector<int> blocks_with_saturation;
|
| + for (int k = 99; k < 200; ++k) {
|
| + blocks_with_saturation.push_back(k);
|
| + }
|
| +
|
| + std::array<float, kBlockSize> e;
|
| + std::array<float, kBlockSize> y;
|
| + FftData G_a;
|
| + FftData G_b;
|
| + FftData G_a_ref;
|
| + G_a_ref.re.fill(0.f);
|
| + G_a_ref.im.fill(0.f);
|
| +
|
| + std::array<float, kFftLengthBy2Plus1> G_a_power;
|
| + std::array<float, kFftLengthBy2Plus1> G_b_power;
|
| +
|
| + RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G_a);
|
| +
|
| + EXPECT_EQ(G_a_ref.re, G_a.re);
|
| + EXPECT_EQ(G_a_ref.im, G_a.im);
|
| +
|
| + RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G_a);
|
| + RunFilterUpdateTest(201, 65, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G_b);
|
| +
|
| + G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
|
| + G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
|
| +
|
| + EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
|
| + std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
|
| +}
|
| +
|
| +// Verifies that the gain increases after an echo path change.
|
| +TEST(MainFilterUpdateGain, EchoPathChangeBehavior) {
|
| + std::vector<int> blocks_with_echo_path_changes;
|
| + std::vector<int> blocks_with_saturation;
|
| + blocks_with_echo_path_changes.push_back(99);
|
| +
|
| + std::array<float, kBlockSize> e;
|
| + std::array<float, kBlockSize> y;
|
| + FftData G_a;
|
| + FftData G_b;
|
| + std::array<float, kFftLengthBy2Plus1> G_a_power;
|
| + std::array<float, kFftLengthBy2Plus1> G_b_power;
|
| +
|
| + RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G_a);
|
| + RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
|
| + blocks_with_saturation, false, &e, &y, &G_b);
|
| +
|
| + G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
|
| + G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
|
| +
|
| + EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
|
| + std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|