Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1242)

Side by Side Diff: webrtc/modules/audio_processing/aec3/main_filter_update_gain_unittest.cc

Issue 2678423005: Finalization of the first version of EchoCanceller 3 (Closed)
Patch Set: Fixed compilation error Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/aec3/main_filter_update_gain.h"
12
13 #include <algorithm>
14 #include <numeric>
15 #include <string>
16
17 #include "webrtc/base/random.h"
18 #include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h"
19 #include "webrtc/modules/audio_processing/aec3/aec_state.h"
20 #include "webrtc/modules/audio_processing/aec3/fft_buffer.h"
21 #include "webrtc/modules/audio_processing/aec3/render_signal_analyzer.h"
22 #include "webrtc/modules/audio_processing/aec3/shadow_filter_update_gain.h"
23 #include "webrtc/modules/audio_processing/aec3/subtractor_output.h"
24 #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
25 #include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h"
26 #include "webrtc/test/gtest.h"
27
28 namespace webrtc {
29 namespace {
30
31 // Method for performing the simulations needed to test the main filter update
32 // gain functionality.
33 void RunFilterUpdateTest(int num_blocks_to_process,
34 size_t delay_samples,
35 const std::vector<int>& blocks_with_echo_path_changes,
36 const std::vector<int>& blocks_with_saturation,
37 bool use_silent_render_in_second_half,
38 std::array<float, kBlockSize>* e_last_block,
39 std::array<float, kBlockSize>* y_last_block,
40 FftData* G_last_block) {
41 ApmDataDumper data_dumper(42);
42 AdaptiveFirFilter main_filter(9, true, DetectOptimization(), &data_dumper);
43 AdaptiveFirFilter shadow_filter(9, true, DetectOptimization(), &data_dumper);
44 Aec3Fft fft;
45 FftBuffer X_buffer(Aec3Optimization::kNone, main_filter.SizePartitions(),
46 std::vector<size_t>(1, main_filter.SizePartitions()));
47 std::array<float, kBlockSize> x_old;
48 x_old.fill(0.f);
49 ShadowFilterUpdateGain shadow_gain;
50 MainFilterUpdateGain main_gain;
51 Random random_generator(42U);
52 std::vector<float> x(kBlockSize, 0.f);
53 std::vector<float> y(kBlockSize, 0.f);
54 AecState aec_state;
55 RenderSignalAnalyzer render_signal_analyzer;
56 FftData X;
57 std::array<float, kFftLength> s;
58 FftData S;
59 FftData G;
60 SubtractorOutput output;
61 output.Reset();
62 FftData& E_main = output.E_main;
63 FftData& E_shadow = output.E_shadow;
64 std::array<float, kFftLengthBy2Plus1> Y2;
65 std::array<float, kFftLengthBy2Plus1>& E2_main = output.E2_main;
66 std::array<float, kFftLengthBy2Plus1>& E2_shadow = output.E2_shadow;
67 std::array<float, kBlockSize>& e_main = output.e_main;
68 std::array<float, kBlockSize>& e_shadow = output.e_shadow;
69 Y2.fill(0.f);
70
71 constexpr float kScale = 1.0f / kFftLengthBy2;
72
73 DelayBuffer<float> delay_buffer(delay_samples);
74 for (int k = 0; k < num_blocks_to_process; ++k) {
75 // Handle echo path changes.
76 if (std::find(blocks_with_echo_path_changes.begin(),
77 blocks_with_echo_path_changes.end(),
78 k) != blocks_with_echo_path_changes.end()) {
79 main_filter.HandleEchoPathChange();
80 }
81
82 // Handle saturation.
83 const bool saturation =
84 std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(),
85 k) != blocks_with_saturation.end();
86
87 // Create the render signal.
88 if (use_silent_render_in_second_half && k > num_blocks_to_process / 2) {
89 std::fill(x.begin(), x.end(), 0.f);
90 } else {
91 RandomizeSampleVector(&random_generator, x);
92 }
93 delay_buffer.Delay(x, y);
94 fft.PaddedFft(x, x_old, &X);
95 X_buffer.Insert(X);
96 render_signal_analyzer.Update(X_buffer, aec_state.FilterDelay());
97
98 // Apply the main filter.
99 main_filter.Filter(X_buffer, &S);
100 fft.Ifft(S, &s);
101 std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2,
102 e_main.begin(),
103 [&](float a, float b) { return a - b * kScale; });
104 std::for_each(e_main.begin(), e_main.end(), [](float& a) {
105 a = std::max(std::min(a, 32767.0f), -32768.0f);
106 });
107 fft.ZeroPaddedFft(e_main, &E_main);
108
109 // Apply the shadow filter.
110 shadow_filter.Filter(X_buffer, &S);
111 fft.Ifft(S, &s);
112 std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2,
113 e_shadow.begin(),
114 [&](float a, float b) { return a - b * kScale; });
115 std::for_each(e_shadow.begin(), e_shadow.end(), [](float& a) {
116 a = std::max(std::min(a, 32767.0f), -32768.0f);
117 });
118 fft.ZeroPaddedFft(e_shadow, &E_shadow);
119
120 // Compute spectra for future use.
121 E_main.Spectrum(Aec3Optimization::kNone, &output.E2_main);
122 E_shadow.Spectrum(Aec3Optimization::kNone, &output.E2_shadow);
123
124 // Adapt the shadow filter.
125 shadow_gain.Compute(X_buffer, render_signal_analyzer, E_shadow,
126 shadow_filter.SizePartitions(), saturation, &G);
127 shadow_filter.Adapt(X_buffer, G);
128
129 // Adapt the main filter
130 main_gain.Compute(X_buffer, render_signal_analyzer, output, main_filter,
131 saturation, &G);
132 main_filter.Adapt(X_buffer, G);
133
134 // Update the delay.
135 aec_state.Update(main_filter.FilterFrequencyResponse(),
136 rtc::Optional<size_t>(), X_buffer, E2_main, E2_shadow, Y2,
137 x, EchoPathVariability(false, false), false);
138 }
139
140 std::copy(e_main.begin(), e_main.end(), e_last_block->begin());
141 std::copy(y.begin(), y.end(), y_last_block->begin());
142 std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin());
143 std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin());
144 }
145
146 std::string ProduceDebugText(size_t delay) {
147 std::ostringstream ss;
148 ss << "Delay: " << delay;
149 return ss.str();
150 }
151
152 } // namespace
153
154 #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
155
156 // Verifies that the check for non-null output gain parameter works.
157 TEST(MainFilterUpdateGain, NullDataOutputGain) {
158 ApmDataDumper data_dumper(42);
159 AdaptiveFirFilter filter(9, true, DetectOptimization(), &data_dumper);
160 FftBuffer X_buffer(Aec3Optimization::kNone, filter.SizePartitions(),
161 std::vector<size_t>(1, filter.SizePartitions()));
162 RenderSignalAnalyzer analyzer;
163 SubtractorOutput output;
164 MainFilterUpdateGain gain;
165 EXPECT_DEATH(gain.Compute(X_buffer, analyzer, output, filter, false, nullptr),
166 "");
167 }
168
169 #endif
170
171 // Verifies that the gain formed causes the filter using it to converge.
172 TEST(MainFilterUpdateGain, GainCausesFilterToConverge) {
173 std::vector<int> blocks_with_echo_path_changes;
174 std::vector<int> blocks_with_saturation;
175 for (size_t delay_samples : {0, 64, 150, 200, 301}) {
176 SCOPED_TRACE(ProduceDebugText(delay_samples));
177
178 std::array<float, kBlockSize> e;
179 std::array<float, kBlockSize> y;
180 FftData G;
181
182 RunFilterUpdateTest(500, delay_samples, blocks_with_echo_path_changes,
183 blocks_with_saturation, false, &e, &y, &G);
184
185 // Verify that the main filter is able to perform well.
186 EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
187 std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
188 }
189 }
190
191 // Verifies that the magnitude of the gain on average decreases for a
192 // persistently exciting signal.
193 TEST(MainFilterUpdateGain, DecreasingGain) {
194 std::vector<int> blocks_with_echo_path_changes;
195 std::vector<int> blocks_with_saturation;
196
197 std::array<float, kBlockSize> e;
198 std::array<float, kBlockSize> y;
199 FftData G_a;
200 FftData G_b;
201 FftData G_c;
202 std::array<float, kFftLengthBy2Plus1> G_a_power;
203 std::array<float, kFftLengthBy2Plus1> G_b_power;
204 std::array<float, kFftLengthBy2Plus1> G_c_power;
205
206 RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
207 blocks_with_saturation, false, &e, &y, &G_a);
208 RunFilterUpdateTest(200, 65, blocks_with_echo_path_changes,
209 blocks_with_saturation, false, &e, &y, &G_b);
210 RunFilterUpdateTest(300, 65, blocks_with_echo_path_changes,
211 blocks_with_saturation, false, &e, &y, &G_c);
212
213 G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
214 G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
215 G_c.Spectrum(Aec3Optimization::kNone, &G_c_power);
216
217 EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
218 std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
219
220 EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.),
221 std::accumulate(G_c_power.begin(), G_c_power.end(), 0.));
222 }
223
224 // Verifies that the gain is zero when there is saturation and that the internal
225 // error estimates cause the gain to increase after a period of saturation.
226 TEST(MainFilterUpdateGain, SaturationBehavior) {
227 std::vector<int> blocks_with_echo_path_changes;
228 std::vector<int> blocks_with_saturation;
229 for (int k = 99; k < 200; ++k) {
230 blocks_with_saturation.push_back(k);
231 }
232
233 std::array<float, kBlockSize> e;
234 std::array<float, kBlockSize> y;
235 FftData G_a;
236 FftData G_b;
237 FftData G_a_ref;
238 G_a_ref.re.fill(0.f);
239 G_a_ref.im.fill(0.f);
240
241 std::array<float, kFftLengthBy2Plus1> G_a_power;
242 std::array<float, kFftLengthBy2Plus1> G_b_power;
243
244 RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
245 blocks_with_saturation, false, &e, &y, &G_a);
246
247 EXPECT_EQ(G_a_ref.re, G_a.re);
248 EXPECT_EQ(G_a_ref.im, G_a.im);
249
250 RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes,
251 blocks_with_saturation, false, &e, &y, &G_a);
252 RunFilterUpdateTest(201, 65, blocks_with_echo_path_changes,
253 blocks_with_saturation, false, &e, &y, &G_b);
254
255 G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
256 G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
257
258 EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
259 std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
260 }
261
262 // Verifies that the gain increases after an echo path change.
263 TEST(MainFilterUpdateGain, EchoPathChangeBehavior) {
264 std::vector<int> blocks_with_echo_path_changes;
265 std::vector<int> blocks_with_saturation;
266 blocks_with_echo_path_changes.push_back(99);
267
268 std::array<float, kBlockSize> e;
269 std::array<float, kBlockSize> y;
270 FftData G_a;
271 FftData G_b;
272 std::array<float, kFftLengthBy2Plus1> G_a_power;
273 std::array<float, kFftLengthBy2Plus1> G_b_power;
274
275 RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes,
276 blocks_with_saturation, false, &e, &y, &G_a);
277 RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
278 blocks_with_saturation, false, &e, &y, &G_b);
279
280 G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
281 G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
282
283 EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
284 std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
285 }
286
287 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698