| Index: webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..005ebd611ddb5e0a585995bca3e95e7f99c91f3b
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
|
| @@ -0,0 +1,214 @@
|
| +/*
|
| + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h"
|
| +
|
| +#include <math.h>
|
| +#include <vector>
|
| +
|
| +#include "webrtc/base/checks.h"
|
| +
|
| +namespace webrtc {
|
| +namespace {
|
| +
|
| +constexpr float kSaturationLeakageFactor = 10.f;
|
| +constexpr size_t kSaturationLeakageBlocks = 10;
|
| +
|
| +// Estimates the residual echo power when there is no detection correlation
|
| +// between the render and capture signals.
|
| +void InfiniteErlPowerEstimate(
|
| + size_t active_render_counter,
|
| + size_t blocks_since_last_saturation,
|
| + const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
|
| + std::array<float, kFftLengthBy2Plus1>* R2) {
|
| + if (active_render_counter > 5 * 250) {
|
| + // After an amount of active render samples for which an echo should have
|
| + // been detected in the capture signal if the ERL was not infinite, set the
|
| + // residual echo to 0.
|
| + R2->fill(0.f);
|
| + } else {
|
| + // Before certainty has been reached about the presence of echo, use the
|
| + // fallback echo power estimate as the residual echo estimate. Add a leakage
|
| + // factor when there is saturation.
|
| + std::copy(S2_fallback.begin(), S2_fallback.end(), R2->begin());
|
| + if (blocks_since_last_saturation < kSaturationLeakageBlocks) {
|
| + std::for_each(R2->begin(), R2->end(),
|
| + [](float& a) { a *= kSaturationLeakageFactor; });
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Estimates the echo power in an half-duplex manner.
|
| +void HalfDuplexPowerEstimate(bool active_render,
|
| + const std::array<float, kFftLengthBy2Plus1>& Y2,
|
| + std::array<float, kFftLengthBy2Plus1>* R2) {
|
| + // Set the residual echo power to the power of the capture signal.
|
| + if (active_render) {
|
| + std::copy(Y2.begin(), Y2.end(), R2->begin());
|
| + } else {
|
| + R2->fill(0.f);
|
| + }
|
| +}
|
| +
|
| +// Estimates the residual echo power based on gains.
|
| +void GainBasedPowerEstimate(
|
| + size_t external_delay,
|
| + const FftBuffer& X_buffer,
|
| + size_t blocks_since_last_saturation,
|
| + const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter,
|
| + const std::array<float, kFftLengthBy2Plus1>& echo_path_gain,
|
| + const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
|
| + std::array<float, kFftLengthBy2Plus1>* R2) {
|
| + const auto& X2 = X_buffer.Spectrum(external_delay);
|
| +
|
| + // Base the residual echo power on gain of the linear echo path estimate if
|
| + // that is reliable, otherwise use the fallback echo path estimate. Add a
|
| + // leakage factor when there is saturation.
|
| + for (size_t k = 0; k < R2->size(); ++k) {
|
| + (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k]
|
| + : S2_fallback[k];
|
| + }
|
| + if (blocks_since_last_saturation < kSaturationLeakageBlocks) {
|
| + std::for_each(R2->begin(), R2->end(),
|
| + [](float& a) { a *= kSaturationLeakageFactor; });
|
| + }
|
| +}
|
| +
|
| +// Estimates the residual echo power based on the linear echo path.
|
| +void ErleBasedPowerEstimate(
|
| + bool headset_detected,
|
| + const FftBuffer& X_buffer,
|
| + bool using_subtractor_output,
|
| + size_t linear_filter_based_delay,
|
| + size_t blocks_since_last_saturation,
|
| + bool poorly_aligned_filter,
|
| + const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter,
|
| + const std::array<float, kFftLengthBy2Plus1>& echo_path_gain,
|
| + const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
|
| + const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
| + const std::array<float, kFftLengthBy2Plus1>& Y2,
|
| + const std::array<float, kFftLengthBy2Plus1>& erle,
|
| + const std::array<float, kFftLengthBy2Plus1>& erl,
|
| + std::array<float, kFftLengthBy2Plus1>* R2) {
|
| + // Residual echo power after saturation.
|
| + if (blocks_since_last_saturation < kSaturationLeakageBlocks) {
|
| + for (size_t k = 0; k < R2->size(); ++k) {
|
| + (*R2)[k] = kSaturationLeakageFactor *
|
| + (bands_with_reliable_filter[k] && using_subtractor_output
|
| + ? S2_linear[k]
|
| + : std::min(S2_fallback[k], Y2[k]));
|
| + }
|
| + return;
|
| + }
|
| +
|
| + // Residual echo power when a headset is used.
|
| + if (headset_detected) {
|
| + const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay);
|
| + for (size_t k = 0; k < R2->size(); ++k) {
|
| + RTC_DCHECK_LT(0.f, erle[k]);
|
| + (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output
|
| + ? S2_linear[k] / erle[k]
|
| + : std::min(S2_fallback[k], Y2[k]);
|
| + (*R2)[k] = std::min((*R2)[k], X2[k] * erl[k]);
|
| + }
|
| + return;
|
| + }
|
| +
|
| + // Residual echo power when the adaptive filter is poorly aligned.
|
| + if (poorly_aligned_filter) {
|
| + for (size_t k = 0; k < R2->size(); ++k) {
|
| + (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output
|
| + ? S2_linear[k]
|
| + : std::min(S2_fallback[k], Y2[k]);
|
| + }
|
| + return;
|
| + }
|
| +
|
| + // Residual echo power when there is no recent saturation, no headset detected
|
| + // and when the adaptive filter is well aligned.
|
| + for (size_t k = 0; k < R2->size(); ++k) {
|
| + RTC_DCHECK_LT(0.f, erle[k]);
|
| + (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output
|
| + ? S2_linear[k] / erle[k]
|
| + : std::min(S2_fallback[k], Y2[k]);
|
| + }
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +ResidualEchoEstimator::ResidualEchoEstimator() {
|
| + echo_path_gain_.fill(0.f);
|
| +}
|
| +
|
| +ResidualEchoEstimator::~ResidualEchoEstimator() = default;
|
| +
|
| +void ResidualEchoEstimator::Estimate(
|
| + bool using_subtractor_output,
|
| + const AecState& aec_state,
|
| + const FftBuffer& X_buffer,
|
| + const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2,
|
| + const std::array<float, kFftLengthBy2Plus1>& E2_main,
|
| + const std::array<float, kFftLengthBy2Plus1>& E2_shadow,
|
| + const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
| + const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
|
| + const std::array<float, kFftLengthBy2Plus1>& Y2,
|
| + std::array<float, kFftLengthBy2Plus1>* R2) {
|
| + RTC_DCHECK(R2);
|
| + const rtc::Optional<size_t>& linear_filter_based_delay =
|
| + aec_state.FilterDelay();
|
| +
|
| + // Update the echo path gain.
|
| + if (linear_filter_based_delay) {
|
| + std::copy(H2[*linear_filter_based_delay].begin(),
|
| + H2[*linear_filter_based_delay].end(), echo_path_gain_.begin());
|
| + }
|
| +
|
| + // Counts the blocks since saturation.
|
| + if (aec_state.SaturatedCapture()) {
|
| + blocks_since_last_saturation_ = 0;
|
| + } else {
|
| + ++blocks_since_last_saturation_;
|
| + }
|
| +
|
| + // Counts the number of active render blocks that are in a row.
|
| + if (aec_state.ActiveRender()) {
|
| + ++active_render_counter_;
|
| + }
|
| +
|
| + const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter();
|
| +
|
| + if (aec_state.UsableLinearEstimate()) {
|
| + // Residual echo power estimation when the adaptive filter is reliable.
|
| + RTC_DCHECK(linear_filter_based_delay);
|
| + ErleBasedPowerEstimate(
|
| + aec_state.HeadsetDetected(), X_buffer, using_subtractor_output,
|
| + *linear_filter_based_delay, blocks_since_last_saturation_,
|
| + aec_state.PoorlyAlignedFilter(), bands_with_reliable_filter,
|
| + echo_path_gain_, S2_fallback, S2_linear, Y2, aec_state.Erle(),
|
| + aec_state.Erl(), R2);
|
| + } else if (aec_state.ModelBasedAecFeasible()) {
|
| + // Residual echo power when the adaptive filter is not reliable but still an
|
| + // external echo path delay is provided (and hence can be estimated).
|
| + RTC_DCHECK(aec_state.ExternalDelay());
|
| + GainBasedPowerEstimate(
|
| + *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_,
|
| + bands_with_reliable_filter, echo_path_gain_, S2_fallback, R2);
|
| + } else if (aec_state.EchoLeakageDetected()) {
|
| + // Residual echo power when an external residual echo detection algorithm
|
| + // has deemed the echo canceller to leak echoes.
|
| + HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2);
|
| + } else {
|
| + // Residual echo power when none of the other cases are fulfilled.
|
| + InfiniteErlPowerEstimate(active_render_counter_,
|
| + blocks_since_last_saturation_, S2_fallback, R2);
|
| + }
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|