OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ |
| 10 |
| 11 #include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h" |
| 12 |
| 13 #include <math.h> |
| 14 #include <vector> |
| 15 |
| 16 #include "webrtc/base/checks.h" |
| 17 |
| 18 namespace webrtc { |
| 19 namespace { |
| 20 |
| 21 constexpr float kSaturationLeakageFactor = 10.f; |
| 22 constexpr size_t kSaturationLeakageBlocks = 10; |
| 23 |
| 24 // Estimates the residual echo power when there is no detection correlation |
| 25 // between the render and capture signals. |
| 26 void InfiniteErlPowerEstimate( |
| 27 size_t active_render_counter, |
| 28 size_t blocks_since_last_saturation, |
| 29 const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| 30 std::array<float, kFftLengthBy2Plus1>* R2) { |
| 31 if (active_render_counter > 5 * 250) { |
| 32 // After an amount of active render samples for which an echo should have |
| 33 // been detected in the capture signal if the ERL was not infinite, set the |
| 34 // residual echo to 0. |
| 35 R2->fill(0.f); |
| 36 } else { |
| 37 // Before certainty has been reached about the presence of echo, use the |
| 38 // fallback echo power estimate as the residual echo estimate. Add a leakage |
| 39 // factor when there is saturation. |
| 40 std::copy(S2_fallback.begin(), S2_fallback.end(), R2->begin()); |
| 41 if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| 42 std::for_each(R2->begin(), R2->end(), |
| 43 [](float& a) { a *= kSaturationLeakageFactor; }); |
| 44 } |
| 45 } |
| 46 } |
| 47 |
| 48 // Estimates the echo power in an half-duplex manner. |
| 49 void HalfDuplexPowerEstimate(bool active_render, |
| 50 const std::array<float, kFftLengthBy2Plus1>& Y2, |
| 51 std::array<float, kFftLengthBy2Plus1>* R2) { |
| 52 // Set the residual echo power to the power of the capture signal. |
| 53 if (active_render) { |
| 54 std::copy(Y2.begin(), Y2.end(), R2->begin()); |
| 55 } else { |
| 56 R2->fill(0.f); |
| 57 } |
| 58 } |
| 59 |
| 60 // Estimates the residual echo power based on gains. |
| 61 void GainBasedPowerEstimate( |
| 62 size_t external_delay, |
| 63 const FftBuffer& X_buffer, |
| 64 size_t blocks_since_last_saturation, |
| 65 const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, |
| 66 const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, |
| 67 const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| 68 std::array<float, kFftLengthBy2Plus1>* R2) { |
| 69 const auto& X2 = X_buffer.Spectrum(external_delay); |
| 70 |
| 71 // Base the residual echo power on gain of the linear echo path estimate if |
| 72 // that is reliable, otherwise use the fallback echo path estimate. Add a |
| 73 // leakage factor when there is saturation. |
| 74 for (size_t k = 0; k < R2->size(); ++k) { |
| 75 (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k] |
| 76 : S2_fallback[k]; |
| 77 } |
| 78 if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| 79 std::for_each(R2->begin(), R2->end(), |
| 80 [](float& a) { a *= kSaturationLeakageFactor; }); |
| 81 } |
| 82 } |
| 83 |
| 84 // Estimates the residual echo power based on the linear echo path. |
| 85 void ErleBasedPowerEstimate( |
| 86 bool headset_detected, |
| 87 const FftBuffer& X_buffer, |
| 88 bool using_subtractor_output, |
| 89 size_t linear_filter_based_delay, |
| 90 size_t blocks_since_last_saturation, |
| 91 bool poorly_aligned_filter, |
| 92 const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, |
| 93 const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, |
| 94 const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| 95 const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| 96 const std::array<float, kFftLengthBy2Plus1>& Y2, |
| 97 const std::array<float, kFftLengthBy2Plus1>& erle, |
| 98 const std::array<float, kFftLengthBy2Plus1>& erl, |
| 99 std::array<float, kFftLengthBy2Plus1>* R2) { |
| 100 // Residual echo power after saturation. |
| 101 if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| 102 for (size_t k = 0; k < R2->size(); ++k) { |
| 103 (*R2)[k] = kSaturationLeakageFactor * |
| 104 (bands_with_reliable_filter[k] && using_subtractor_output |
| 105 ? S2_linear[k] |
| 106 : std::min(S2_fallback[k], Y2[k])); |
| 107 } |
| 108 return; |
| 109 } |
| 110 |
| 111 // Residual echo power when a headset is used. |
| 112 if (headset_detected) { |
| 113 const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay); |
| 114 for (size_t k = 0; k < R2->size(); ++k) { |
| 115 RTC_DCHECK_LT(0.f, erle[k]); |
| 116 (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| 117 ? S2_linear[k] / erle[k] |
| 118 : std::min(S2_fallback[k], Y2[k]); |
| 119 (*R2)[k] = std::min((*R2)[k], X2[k] * erl[k]); |
| 120 } |
| 121 return; |
| 122 } |
| 123 |
| 124 // Residual echo power when the adaptive filter is poorly aligned. |
| 125 if (poorly_aligned_filter) { |
| 126 for (size_t k = 0; k < R2->size(); ++k) { |
| 127 (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| 128 ? S2_linear[k] |
| 129 : std::min(S2_fallback[k], Y2[k]); |
| 130 } |
| 131 return; |
| 132 } |
| 133 |
| 134 // Residual echo power when there is no recent saturation, no headset detected |
| 135 // and when the adaptive filter is well aligned. |
| 136 for (size_t k = 0; k < R2->size(); ++k) { |
| 137 RTC_DCHECK_LT(0.f, erle[k]); |
| 138 (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| 139 ? S2_linear[k] / erle[k] |
| 140 : std::min(S2_fallback[k], Y2[k]); |
| 141 } |
| 142 } |
| 143 |
| 144 } // namespace |
| 145 |
| 146 ResidualEchoEstimator::ResidualEchoEstimator() { |
| 147 echo_path_gain_.fill(0.f); |
| 148 } |
| 149 |
| 150 ResidualEchoEstimator::~ResidualEchoEstimator() = default; |
| 151 |
| 152 void ResidualEchoEstimator::Estimate( |
| 153 bool using_subtractor_output, |
| 154 const AecState& aec_state, |
| 155 const FftBuffer& X_buffer, |
| 156 const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2, |
| 157 const std::array<float, kFftLengthBy2Plus1>& E2_main, |
| 158 const std::array<float, kFftLengthBy2Plus1>& E2_shadow, |
| 159 const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| 160 const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| 161 const std::array<float, kFftLengthBy2Plus1>& Y2, |
| 162 std::array<float, kFftLengthBy2Plus1>* R2) { |
| 163 RTC_DCHECK(R2); |
| 164 const rtc::Optional<size_t>& linear_filter_based_delay = |
| 165 aec_state.FilterDelay(); |
| 166 |
| 167 // Update the echo path gain. |
| 168 if (linear_filter_based_delay) { |
| 169 std::copy(H2[*linear_filter_based_delay].begin(), |
| 170 H2[*linear_filter_based_delay].end(), echo_path_gain_.begin()); |
| 171 } |
| 172 |
| 173 // Counts the blocks since saturation. |
| 174 if (aec_state.SaturatedCapture()) { |
| 175 blocks_since_last_saturation_ = 0; |
| 176 } else { |
| 177 ++blocks_since_last_saturation_; |
| 178 } |
| 179 |
| 180 // Counts the number of active render blocks that are in a row. |
| 181 if (aec_state.ActiveRender()) { |
| 182 ++active_render_counter_; |
| 183 } |
| 184 |
| 185 const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter(); |
| 186 |
| 187 if (aec_state.UsableLinearEstimate()) { |
| 188 // Residual echo power estimation when the adaptive filter is reliable. |
| 189 RTC_DCHECK(linear_filter_based_delay); |
| 190 ErleBasedPowerEstimate( |
| 191 aec_state.HeadsetDetected(), X_buffer, using_subtractor_output, |
| 192 *linear_filter_based_delay, blocks_since_last_saturation_, |
| 193 aec_state.PoorlyAlignedFilter(), bands_with_reliable_filter, |
| 194 echo_path_gain_, S2_fallback, S2_linear, Y2, aec_state.Erle(), |
| 195 aec_state.Erl(), R2); |
| 196 } else if (aec_state.ModelBasedAecFeasible()) { |
| 197 // Residual echo power when the adaptive filter is not reliable but still an |
| 198 // external echo path delay is provided (and hence can be estimated). |
| 199 RTC_DCHECK(aec_state.ExternalDelay()); |
| 200 GainBasedPowerEstimate( |
| 201 *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_, |
| 202 bands_with_reliable_filter, echo_path_gain_, S2_fallback, R2); |
| 203 } else if (aec_state.EchoLeakageDetected()) { |
| 204 // Residual echo power when an external residual echo detection algorithm |
| 205 // has deemed the echo canceller to leak echoes. |
| 206 HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2); |
| 207 } else { |
| 208 // Residual echo power when none of the other cases are fulfilled. |
| 209 InfiniteErlPowerEstimate(active_render_counter_, |
| 210 blocks_since_last_saturation_, S2_fallback, R2); |
| 211 } |
| 212 } |
| 213 |
| 214 } // namespace webrtc |
OLD | NEW |