Index: webrtc/modules/congestion_controller/trendline_estimator_unittest.cc |
diff --git a/webrtc/modules/congestion_controller/trendline_estimator_unittest.cc b/webrtc/modules/congestion_controller/trendline_estimator_unittest.cc |
index b923ac5cd6ea63be3240c8fe44bd609a2cbe2726..51778e6cf37f2b099b0c518b070b363ba4473027 100644 |
--- a/webrtc/modules/congestion_controller/trendline_estimator_unittest.cc |
+++ b/webrtc/modules/congestion_controller/trendline_estimator_unittest.cc |
@@ -15,59 +15,100 @@ |
namespace webrtc { |
namespace { |
-constexpr size_t kWindowSize = 20; |
+constexpr size_t kWindowSize = 15; |
constexpr double kSmoothing = 0.0; |
constexpr double kGain = 1; |
constexpr int64_t kAvgTimeBetweenPackets = 10; |
-constexpr size_t kPacketCount = 2 * kWindowSize + 1; |
} // namespace |
-void TestEstimator(double slope, double jitter_stddev, double tolerance) { |
+TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) { |
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
- Random random(0x1234567); |
- int64_t send_times[kPacketCount]; |
- int64_t recv_times[kPacketCount]; |
- int64_t send_start_time = random.Rand(1000000); |
- int64_t recv_start_time = random.Rand(1000000); |
- for (size_t i = 0; i < kPacketCount; ++i) { |
- send_times[i] = send_start_time + i * kAvgTimeBetweenPackets; |
- double latency = i * kAvgTimeBetweenPackets / (1 - slope); |
- double jitter = random.Gaussian(0, jitter_stddev); |
- recv_times[i] = recv_start_time + latency + jitter; |
- } |
- for (size_t i = 1; i < kPacketCount; ++i) { |
- double recv_delta = recv_times[i] - recv_times[i - 1]; |
- double send_delta = send_times[i] - send_times[i - 1]; |
- estimator.Update(recv_delta, send_delta, recv_times[i]); |
+ Random rand(0x1234567); |
+ double now_ms = rand.Rand<double>() * 10000; |
+ for (size_t i = 1; i < 2 * kWindowSize; i++) { |
+ double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
+ double recv_delta = 2 * send_delta; |
+ now_ms += recv_delta; |
+ estimator.Update(recv_delta, send_delta, now_ms); |
if (i < kWindowSize) |
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
else |
- EXPECT_NEAR(estimator.trendline_slope(), slope, tolerance); |
+ EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001); |
} |
} |
-TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) { |
- TestEstimator(0.5, 0, 0.001); |
-} |
- |
TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) { |
- TestEstimator(-1, 0, 0.001); |
+ TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
+ Random rand(0x1234567); |
+ double now_ms = rand.Rand<double>() * 10000; |
+ for (size_t i = 1; i < 2 * kWindowSize; i++) { |
+ double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
+ double recv_delta = 0.5 * send_delta; |
+ now_ms += recv_delta; |
+ estimator.Update(recv_delta, send_delta, now_ms); |
+ if (i < kWindowSize) |
+ EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
+ else |
+ EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001); |
+ } |
} |
TEST(TrendlineEstimator, PerfectLineSlopeZero) { |
- TestEstimator(0, 0, 0.001); |
+ TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
+ Random rand(0x1234567); |
+ double now_ms = rand.Rand<double>() * 10000; |
+ for (size_t i = 1; i < 2 * kWindowSize; i++) { |
+ double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
+ double recv_delta = send_delta; |
+ now_ms += recv_delta; |
+ estimator.Update(recv_delta, send_delta, now_ms); |
+ EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
+ } |
} |
TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) { |
- TestEstimator(0.5, kAvgTimeBetweenPackets / 3.0, 0.01); |
+ TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
+ Random rand(0x1234567); |
+ double now_ms = rand.Rand<double>() * 10000; |
+ for (size_t i = 1; i < 2 * kWindowSize; i++) { |
+ double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
+ double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3); |
+ now_ms += recv_delta; |
+ estimator.Update(recv_delta, send_delta, now_ms); |
+ if (i < kWindowSize) |
+ EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
+ else |
+ EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1); |
+ } |
} |
TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) { |
- TestEstimator(-1, kAvgTimeBetweenPackets / 3.0, 0.075); |
+ TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
+ Random rand(0x1234567); |
+ double now_ms = rand.Rand<double>() * 10000; |
+ for (size_t i = 1; i < 2 * kWindowSize; i++) { |
+ double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
+ double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25); |
+ now_ms += recv_delta; |
+ estimator.Update(recv_delta, send_delta, now_ms); |
+ if (i < kWindowSize) |
+ EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
+ else |
+ EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1); |
+ } |
} |
TEST(TrendlineEstimator, JitteryLineSlopeZero) { |
- TestEstimator(0, kAvgTimeBetweenPackets / 3.0, 0.02); |
+ TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
+ Random rand(0x1234567); |
+ double now_ms = rand.Rand<double>() * 10000; |
+ for (size_t i = 1; i < 2 * kWindowSize; i++) { |
+ double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
+ double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8); |
+ now_ms += recv_delta; |
+ estimator.Update(recv_delta, send_delta, now_ms); |
+ EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1); |
+ } |
} |
} // namespace webrtc |