| Index: webrtc/modules/congestion_controller/trendline_estimator_unittest.cc
|
| diff --git a/webrtc/modules/congestion_controller/trendline_estimator_unittest.cc b/webrtc/modules/congestion_controller/trendline_estimator_unittest.cc
|
| index b923ac5cd6ea63be3240c8fe44bd609a2cbe2726..51778e6cf37f2b099b0c518b070b363ba4473027 100644
|
| --- a/webrtc/modules/congestion_controller/trendline_estimator_unittest.cc
|
| +++ b/webrtc/modules/congestion_controller/trendline_estimator_unittest.cc
|
| @@ -15,59 +15,100 @@
|
| namespace webrtc {
|
|
|
| namespace {
|
| -constexpr size_t kWindowSize = 20;
|
| +constexpr size_t kWindowSize = 15;
|
| constexpr double kSmoothing = 0.0;
|
| constexpr double kGain = 1;
|
| constexpr int64_t kAvgTimeBetweenPackets = 10;
|
| -constexpr size_t kPacketCount = 2 * kWindowSize + 1;
|
| } // namespace
|
|
|
| -void TestEstimator(double slope, double jitter_stddev, double tolerance) {
|
| +TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
|
| TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
| - Random random(0x1234567);
|
| - int64_t send_times[kPacketCount];
|
| - int64_t recv_times[kPacketCount];
|
| - int64_t send_start_time = random.Rand(1000000);
|
| - int64_t recv_start_time = random.Rand(1000000);
|
| - for (size_t i = 0; i < kPacketCount; ++i) {
|
| - send_times[i] = send_start_time + i * kAvgTimeBetweenPackets;
|
| - double latency = i * kAvgTimeBetweenPackets / (1 - slope);
|
| - double jitter = random.Gaussian(0, jitter_stddev);
|
| - recv_times[i] = recv_start_time + latency + jitter;
|
| - }
|
| - for (size_t i = 1; i < kPacketCount; ++i) {
|
| - double recv_delta = recv_times[i] - recv_times[i - 1];
|
| - double send_delta = send_times[i] - send_times[i - 1];
|
| - estimator.Update(recv_delta, send_delta, recv_times[i]);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = 2 * send_delta;
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| if (i < kWindowSize)
|
| EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| else
|
| - EXPECT_NEAR(estimator.trendline_slope(), slope, tolerance);
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001);
|
| }
|
| }
|
|
|
| -TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
|
| - TestEstimator(0.5, 0, 0.001);
|
| -}
|
| -
|
| TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) {
|
| - TestEstimator(-1, 0, 0.001);
|
| + TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = 0.5 * send_delta;
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + if (i < kWindowSize)
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + else
|
| + EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001);
|
| + }
|
| }
|
|
|
| TEST(TrendlineEstimator, PerfectLineSlopeZero) {
|
| - TestEstimator(0, 0, 0.001);
|
| + TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = send_delta;
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + }
|
| }
|
|
|
| TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) {
|
| - TestEstimator(0.5, kAvgTimeBetweenPackets / 3.0, 0.01);
|
| + TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3);
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + if (i < kWindowSize)
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + else
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1);
|
| + }
|
| }
|
|
|
| TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) {
|
| - TestEstimator(-1, kAvgTimeBetweenPackets / 3.0, 0.075);
|
| + TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25);
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + if (i < kWindowSize)
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + else
|
| + EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1);
|
| + }
|
| }
|
|
|
| TEST(TrendlineEstimator, JitteryLineSlopeZero) {
|
| - TestEstimator(0, kAvgTimeBetweenPackets / 3.0, 0.02);
|
| + TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8);
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1);
|
| + }
|
| }
|
|
|
| } // namespace webrtc
|
|
|