Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1013)

Side by Side Diff: webrtc/modules/congestion_controller/trendline_estimator_unittest.cc

Issue 2582513002: Revert of Avoid precision loss in TrendlineEstimator from int64_t -> double conversion (Closed)
Patch Set: Created 4 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « webrtc/modules/congestion_controller/trendline_estimator.cc ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/test/gtest.h" 11 #include "webrtc/test/gtest.h"
12 #include "webrtc/base/random.h" 12 #include "webrtc/base/random.h"
13 #include "webrtc/modules/congestion_controller/trendline_estimator.h" 13 #include "webrtc/modules/congestion_controller/trendline_estimator.h"
14 14
15 namespace webrtc { 15 namespace webrtc {
16 16
17 namespace { 17 namespace {
18 constexpr size_t kWindowSize = 20; 18 constexpr size_t kWindowSize = 15;
19 constexpr double kSmoothing = 0.0; 19 constexpr double kSmoothing = 0.0;
20 constexpr double kGain = 1; 20 constexpr double kGain = 1;
21 constexpr int64_t kAvgTimeBetweenPackets = 10; 21 constexpr int64_t kAvgTimeBetweenPackets = 10;
22 constexpr size_t kPacketCount = 2 * kWindowSize + 1;
23 } // namespace 22 } // namespace
24 23
25 void TestEstimator(double slope, double jitter_stddev, double tolerance) { 24 TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
26 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); 25 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
27 Random random(0x1234567); 26 Random rand(0x1234567);
28 int64_t send_times[kPacketCount]; 27 double now_ms = rand.Rand<double>() * 10000;
29 int64_t recv_times[kPacketCount]; 28 for (size_t i = 1; i < 2 * kWindowSize; i++) {
30 int64_t send_start_time = random.Rand(1000000); 29 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
31 int64_t recv_start_time = random.Rand(1000000); 30 double recv_delta = 2 * send_delta;
32 for (size_t i = 0; i < kPacketCount; ++i) { 31 now_ms += recv_delta;
33 send_times[i] = send_start_time + i * kAvgTimeBetweenPackets; 32 estimator.Update(recv_delta, send_delta, now_ms);
34 double latency = i * kAvgTimeBetweenPackets / (1 - slope);
35 double jitter = random.Gaussian(0, jitter_stddev);
36 recv_times[i] = recv_start_time + latency + jitter;
37 }
38 for (size_t i = 1; i < kPacketCount; ++i) {
39 double recv_delta = recv_times[i] - recv_times[i - 1];
40 double send_delta = send_times[i] - send_times[i - 1];
41 estimator.Update(recv_delta, send_delta, recv_times[i]);
42 if (i < kWindowSize) 33 if (i < kWindowSize)
43 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); 34 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
44 else 35 else
45 EXPECT_NEAR(estimator.trendline_slope(), slope, tolerance); 36 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001);
46 } 37 }
47 } 38 }
48 39
49 TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
50 TestEstimator(0.5, 0, 0.001);
51 }
52
53 TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) { 40 TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) {
54 TestEstimator(-1, 0, 0.001); 41 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
42 Random rand(0x1234567);
43 double now_ms = rand.Rand<double>() * 10000;
44 for (size_t i = 1; i < 2 * kWindowSize; i++) {
45 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
46 double recv_delta = 0.5 * send_delta;
47 now_ms += recv_delta;
48 estimator.Update(recv_delta, send_delta, now_ms);
49 if (i < kWindowSize)
50 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
51 else
52 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001);
53 }
55 } 54 }
56 55
57 TEST(TrendlineEstimator, PerfectLineSlopeZero) { 56 TEST(TrendlineEstimator, PerfectLineSlopeZero) {
58 TestEstimator(0, 0, 0.001); 57 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
58 Random rand(0x1234567);
59 double now_ms = rand.Rand<double>() * 10000;
60 for (size_t i = 1; i < 2 * kWindowSize; i++) {
61 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
62 double recv_delta = send_delta;
63 now_ms += recv_delta;
64 estimator.Update(recv_delta, send_delta, now_ms);
65 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
66 }
59 } 67 }
60 68
61 TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) { 69 TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) {
62 TestEstimator(0.5, kAvgTimeBetweenPackets / 3.0, 0.01); 70 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
71 Random rand(0x1234567);
72 double now_ms = rand.Rand<double>() * 10000;
73 for (size_t i = 1; i < 2 * kWindowSize; i++) {
74 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
75 double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3);
76 now_ms += recv_delta;
77 estimator.Update(recv_delta, send_delta, now_ms);
78 if (i < kWindowSize)
79 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
80 else
81 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1);
82 }
63 } 83 }
64 84
65 TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) { 85 TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) {
66 TestEstimator(-1, kAvgTimeBetweenPackets / 3.0, 0.075); 86 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
87 Random rand(0x1234567);
88 double now_ms = rand.Rand<double>() * 10000;
89 for (size_t i = 1; i < 2 * kWindowSize; i++) {
90 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
91 double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25);
92 now_ms += recv_delta;
93 estimator.Update(recv_delta, send_delta, now_ms);
94 if (i < kWindowSize)
95 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
96 else
97 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1);
98 }
67 } 99 }
68 100
69 TEST(TrendlineEstimator, JitteryLineSlopeZero) { 101 TEST(TrendlineEstimator, JitteryLineSlopeZero) {
70 TestEstimator(0, kAvgTimeBetweenPackets / 3.0, 0.02); 102 TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
103 Random rand(0x1234567);
104 double now_ms = rand.Rand<double>() * 10000;
105 for (size_t i = 1; i < 2 * kWindowSize; i++) {
106 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
107 double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8);
108 now_ms += recv_delta;
109 estimator.Update(recv_delta, send_delta, now_ms);
110 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1);
111 }
71 } 112 }
72 113
73 } // namespace webrtc 114 } // namespace webrtc
OLDNEW
« no previous file with comments | « webrtc/modules/congestion_controller/trendline_estimator.cc ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698