| Index: webrtc/modules/congestion_controller/theil_sen_estimator_unittest.cc
|
| diff --git a/webrtc/modules/congestion_controller/theil_sen_estimator_unittest.cc b/webrtc/modules/congestion_controller/theil_sen_estimator_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e1936dfc1d0b7646e34a5bc44ae9f786c39c872e
|
| --- /dev/null
|
| +++ b/webrtc/modules/congestion_controller/theil_sen_estimator_unittest.cc
|
| @@ -0,0 +1,113 @@
|
| +/*
|
| + * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/test/gtest.h"
|
| +#include "webrtc/base/random.h"
|
| +#include "webrtc/modules/congestion_controller/theil_sen_estimator.h"
|
| +
|
| +namespace webrtc {
|
| +
|
| +namespace {
|
| +constexpr size_t kWindowSize = 20;
|
| +constexpr double kGain = 1;
|
| +constexpr int64_t kAvgTimeBetweenPackets = 10;
|
| +} // namespace
|
| +
|
| +TEST(TheilSenEstimator, PerfectLineSlopeOneHalf) {
|
| + TheilSenEstimator estimator(kWindowSize, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = 2 * send_delta;
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + if (i < kWindowSize)
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + else
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001);
|
| + }
|
| +}
|
| +
|
| +TEST(TheilSenEstimator, PerfectLineSlopeMinusOne) {
|
| + TheilSenEstimator estimator(kWindowSize, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = 0.5 * send_delta;
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + if (i < kWindowSize)
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + else
|
| + EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001);
|
| + }
|
| +}
|
| +
|
| +TEST(TheilSenEstimator, PerfectLineSlopeZero) {
|
| + TheilSenEstimator estimator(kWindowSize, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = send_delta;
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + }
|
| +}
|
| +
|
| +TEST(TheilSenEstimator, JitteryLineSlopeOneHalf) {
|
| + TheilSenEstimator estimator(kWindowSize, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3);
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + if (i < kWindowSize)
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + else
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1);
|
| + }
|
| +}
|
| +
|
| +TEST(TheilSenEstimator, JitteryLineSlopeMinusOne) {
|
| + TheilSenEstimator estimator(kWindowSize, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 20);
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + if (i < kWindowSize)
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
| + else
|
| + EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1);
|
| + }
|
| +}
|
| +
|
| +TEST(TheilSenEstimator, JitteryLineSlopeZero) {
|
| + TheilSenEstimator estimator(kWindowSize, kGain);
|
| + Random rand(0x1234567);
|
| + double now_ms = rand.Rand<double>() * 10000;
|
| + for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
| + double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
| + double recv_delta = send_delta + rand.Gaussian(0, send_delta / 5);
|
| + now_ms += recv_delta;
|
| + estimator.Update(recv_delta, send_delta, now_ms);
|
| + EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1);
|
| + }
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|