Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(182)

Side by Side Diff: webrtc/modules/congestion_controller/theil_sen_estimator_unittest.cc

Issue 2512693002: Implement Theil-Sen's method for fitting a line to noisy data (used in bandwidth estimation). (Closed)
Patch Set: Review comments Created 4 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/test/gtest.h"
12 #include "webrtc/base/random.h"
13 #include "webrtc/modules/congestion_controller/theil_sen_estimator.h"
14
15 namespace webrtc {
16
17 namespace {
18 constexpr size_t kWindowSize = 20;
19 constexpr double kGain = 1;
20 constexpr int64_t kAvgTimeBetweenPackets = 10;
21 } // namespace
22
23 TEST(TheilSenEstimator, PerfectLineSlopeOneHalf) {
24 TheilSenEstimator estimator(kWindowSize, kGain);
25 Random rand(0x1234567);
26 double now_ms = rand.Rand<double>() * 10000;
27 for (size_t i = 1; i < 2 * kWindowSize; i++) {
28 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
29 double recv_delta = 2 * send_delta;
30 now_ms += recv_delta;
31 estimator.Update(recv_delta, send_delta, now_ms);
32 if (i < kWindowSize)
33 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
34 else
35 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001);
36 }
37 }
38
39 TEST(TheilSenEstimator, PerfectLineSlopeMinusOne) {
40 TheilSenEstimator estimator(kWindowSize, kGain);
41 Random rand(0x1234567);
42 double now_ms = rand.Rand<double>() * 10000;
43 for (size_t i = 1; i < 2 * kWindowSize; i++) {
44 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
45 double recv_delta = 0.5 * send_delta;
46 now_ms += recv_delta;
47 estimator.Update(recv_delta, send_delta, now_ms);
48 if (i < kWindowSize)
49 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
50 else
51 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001);
52 }
53 }
54
55 TEST(TheilSenEstimator, PerfectLineSlopeZero) {
56 TheilSenEstimator estimator(kWindowSize, kGain);
57 Random rand(0x1234567);
58 double now_ms = rand.Rand<double>() * 10000;
59 for (size_t i = 1; i < 2 * kWindowSize; i++) {
60 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
61 double recv_delta = send_delta;
62 now_ms += recv_delta;
63 estimator.Update(recv_delta, send_delta, now_ms);
64 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
65 }
66 }
67
68 TEST(TheilSenEstimator, JitteryLineSlopeOneHalf) {
69 TheilSenEstimator estimator(kWindowSize, kGain);
70 Random rand(0x1234567);
71 double now_ms = rand.Rand<double>() * 10000;
72 for (size_t i = 1; i < 2 * kWindowSize; i++) {
73 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
74 double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3);
75 now_ms += recv_delta;
76 estimator.Update(recv_delta, send_delta, now_ms);
77 if (i < kWindowSize)
78 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
79 else
80 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1);
81 }
82 }
83
84 TEST(TheilSenEstimator, JitteryLineSlopeMinusOne) {
85 TheilSenEstimator estimator(kWindowSize, kGain);
86 Random rand(0x1234567);
87 double now_ms = rand.Rand<double>() * 10000;
88 for (size_t i = 1; i < 2 * kWindowSize; i++) {
89 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
90 double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 20);
91 now_ms += recv_delta;
92 estimator.Update(recv_delta, send_delta, now_ms);
93 if (i < kWindowSize)
94 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
95 else
96 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1);
97 }
98 }
99
100 TEST(TheilSenEstimator, JitteryLineSlopeZero) {
101 TheilSenEstimator estimator(kWindowSize, kGain);
102 Random rand(0x1234567);
103 double now_ms = rand.Rand<double>() * 10000;
104 for (size_t i = 1; i < 2 * kWindowSize; i++) {
105 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
106 double recv_delta = send_delta + rand.Gaussian(0, send_delta / 5);
107 now_ms += recv_delta;
108 estimator.Update(recv_delta, send_delta, now_ms);
109 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1);
110 }
111 }
112
113 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698