OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ |
| 10 |
| 11 #include "webrtc/test/gtest.h" |
| 12 #include "webrtc/base/random.h" |
| 13 #include "webrtc/modules/congestion_controller/theil_sen_estimator.h" |
| 14 |
| 15 namespace webrtc { |
| 16 |
| 17 namespace { |
| 18 constexpr size_t kWindowSize = 20; |
| 19 constexpr double kGain = 1; |
| 20 constexpr int64_t kAvgTimeBetweenPackets = 10; |
| 21 } // namespace |
| 22 |
| 23 TEST(TheilSenEstimator, PerfectLineSlopeOneHalf) { |
| 24 TheilSenEstimator estimator(kWindowSize, kGain); |
| 25 Random rand(0x1234567); |
| 26 double now_ms = rand.Rand<double>() * 10000; |
| 27 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 28 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 29 double recv_delta = 2 * send_delta; |
| 30 now_ms += recv_delta; |
| 31 estimator.Update(recv_delta, send_delta, now_ms); |
| 32 if (i < kWindowSize) |
| 33 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 34 else |
| 35 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001); |
| 36 } |
| 37 } |
| 38 |
| 39 TEST(TheilSenEstimator, PerfectLineSlopeMinusOne) { |
| 40 TheilSenEstimator estimator(kWindowSize, kGain); |
| 41 Random rand(0x1234567); |
| 42 double now_ms = rand.Rand<double>() * 10000; |
| 43 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 44 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 45 double recv_delta = 0.5 * send_delta; |
| 46 now_ms += recv_delta; |
| 47 estimator.Update(recv_delta, send_delta, now_ms); |
| 48 if (i < kWindowSize) |
| 49 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 50 else |
| 51 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001); |
| 52 } |
| 53 } |
| 54 |
| 55 TEST(TheilSenEstimator, PerfectLineSlopeZero) { |
| 56 TheilSenEstimator estimator(kWindowSize, kGain); |
| 57 Random rand(0x1234567); |
| 58 double now_ms = rand.Rand<double>() * 10000; |
| 59 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 60 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 61 double recv_delta = send_delta; |
| 62 now_ms += recv_delta; |
| 63 estimator.Update(recv_delta, send_delta, now_ms); |
| 64 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 65 } |
| 66 } |
| 67 |
| 68 TEST(TheilSenEstimator, JitteryLineSlopeOneHalf) { |
| 69 TheilSenEstimator estimator(kWindowSize, kGain); |
| 70 Random rand(0x1234567); |
| 71 double now_ms = rand.Rand<double>() * 10000; |
| 72 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 73 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 74 double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3); |
| 75 now_ms += recv_delta; |
| 76 estimator.Update(recv_delta, send_delta, now_ms); |
| 77 if (i < kWindowSize) |
| 78 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 79 else |
| 80 EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1); |
| 81 } |
| 82 } |
| 83 |
| 84 TEST(TheilSenEstimator, JitteryLineSlopeMinusOne) { |
| 85 TheilSenEstimator estimator(kWindowSize, kGain); |
| 86 Random rand(0x1234567); |
| 87 double now_ms = rand.Rand<double>() * 10000; |
| 88 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 89 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 90 double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 20); |
| 91 now_ms += recv_delta; |
| 92 estimator.Update(recv_delta, send_delta, now_ms); |
| 93 if (i < kWindowSize) |
| 94 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| 95 else |
| 96 EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1); |
| 97 } |
| 98 } |
| 99 |
| 100 TEST(TheilSenEstimator, JitteryLineSlopeZero) { |
| 101 TheilSenEstimator estimator(kWindowSize, kGain); |
| 102 Random rand(0x1234567); |
| 103 double now_ms = rand.Rand<double>() * 10000; |
| 104 for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| 105 double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| 106 double recv_delta = send_delta + rand.Gaussian(0, send_delta / 5); |
| 107 now_ms += recv_delta; |
| 108 estimator.Update(recv_delta, send_delta, now_ms); |
| 109 EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1); |
| 110 } |
| 111 } |
| 112 |
| 113 } // namespace webrtc |
OLD | NEW |