Chromium Code Reviews| Index: webrtc/modules/congestion_controller/trendline_estimator.cc |
| diff --git a/webrtc/modules/congestion_controller/trendline_estimator.cc b/webrtc/modules/congestion_controller/trendline_estimator.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..a086f6aaa1bae4055caddaa77fa3d48962f7bcdf |
| --- /dev/null |
| +++ b/webrtc/modules/congestion_controller/trendline_estimator.cc |
| @@ -0,0 +1,87 @@ |
| +/* |
| + * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| + * |
| + * Use of this source code is governed by a BSD-style license |
| + * that can be found in the LICENSE file in the root of the source |
| + * tree. An additional intellectual property rights grant can be found |
| + * in the file PATENTS. All contributing project authors may |
| + * be found in the AUTHORS file in the root of the source tree. |
| + */ |
| + |
| +#include "webrtc/modules/congestion_controller/trendline_estimator.h" |
| + |
| +#include <algorithm> |
| + |
| +#include "webrtc/base/checks.h" |
| +#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" |
| + |
| +namespace webrtc { |
| + |
| +namespace { |
| +double LinearFitSlope(const std::list<std::pair<double, double>> points) { |
| + RTC_DCHECK(points.size() >= 2); |
|
stefan-webrtc
2016/11/16 15:11:20
Perhaps store points.size() in a local variable in
terelius
2016/11/16 15:39:12
Since C++11, size() is required to be constant tim
|
| + // Compute the "center of mass". |
| + double sum_x = 0; |
| + double sum_y = 0; |
| + for (const auto& point : points) { |
| + sum_x += point.first; |
| + sum_y += point.second; |
| + } |
| + double x_avg = sum_x / points.size(); |
| + double y_avg = sum_y / points.size(); |
| + // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 |
| + double numerator = 0; |
| + double denominator = 0; |
| + for (const auto& point : points) { |
| + numerator += (point.first - x_avg) * (point.second - y_avg); |
| + denominator += (point.first - x_avg) * (point.first - x_avg); |
| + } |
| + return numerator / denominator; |
| +} |
| +} // namespace |
| + |
| +enum { kDeltaCounterMax = 1000 }; |
| + |
| +TrendlineEstimator::TrendlineEstimator(size_t window_size, |
| + double smoothing_coef, |
| + double threshold_gain) |
| + : window_size_(window_size), |
| + smoothing_coef_(smoothing_coef), |
| + threshold_gain_(threshold_gain), |
| + num_of_deltas_(0), |
| + accumulated_delay_(0), |
| + smoothed_delay_(0), |
| + delay_hist_(), |
| + trendline_(0) {} |
| + |
| +TrendlineEstimator::~TrendlineEstimator() {} |
| + |
| +void TrendlineEstimator::Update(double recv_delta_ms, |
| + double send_delta_ms, |
| + double now_ms) { |
| + const double delta_ms = recv_delta_ms - send_delta_ms; |
| + ++num_of_deltas_; |
| + if (num_of_deltas_ > kDeltaCounterMax) { |
| + num_of_deltas_ = kDeltaCounterMax; |
| + } |
| + |
| + // Exponential backoff filter. |
| + accumulated_delay_ += delta_ms; |
| + BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_); |
| + smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + |
| + (1 - smoothing_coef_) * accumulated_delay_; |
| + BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_); |
| + |
| + // Simple linear regression. |
| + delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_)); |
| + if (delay_hist_.size() > window_size_) { |
| + delay_hist_.pop_front(); |
| + } |
| + if (delay_hist_.size() == window_size_) { |
| + trendline_ = LinearFitSlope(delay_hist_); |
| + } |
| + |
| + BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_); |
| +} |
| + |
| +} // namespace webrtc |