Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(68)

Side by Side Diff: webrtc/modules/congestion_controller/trendline_estimator.cc

Issue 2489323002: Add a new overuse estimator for the delay based BWE behind experiment. (Closed)
Patch Set: Remove unused includes, rename variable and fix comment. Created 4 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/congestion_controller/trendline_estimator.h"
12
13 #include <algorithm>
14
15 #include "webrtc/base/checks.h"
16 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
17
18 namespace webrtc {
19
20 namespace {
21 double LinearFitSlope(const std::list<std::pair<double, double>> points) {
22 RTC_DCHECK(points.size() >= 2);
stefan-webrtc 2016/11/16 15:11:20 Perhaps store points.size() in a local variable in
terelius 2016/11/16 15:39:12 Since C++11, size() is required to be constant tim
23 // Compute the "center of mass".
24 double sum_x = 0;
25 double sum_y = 0;
26 for (const auto& point : points) {
27 sum_x += point.first;
28 sum_y += point.second;
29 }
30 double x_avg = sum_x / points.size();
31 double y_avg = sum_y / points.size();
32 // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
33 double numerator = 0;
34 double denominator = 0;
35 for (const auto& point : points) {
36 numerator += (point.first - x_avg) * (point.second - y_avg);
37 denominator += (point.first - x_avg) * (point.first - x_avg);
38 }
39 return numerator / denominator;
40 }
41 } // namespace
42
43 enum { kDeltaCounterMax = 1000 };
44
45 TrendlineEstimator::TrendlineEstimator(size_t window_size,
46 double smoothing_coef,
47 double threshold_gain)
48 : window_size_(window_size),
49 smoothing_coef_(smoothing_coef),
50 threshold_gain_(threshold_gain),
51 num_of_deltas_(0),
52 accumulated_delay_(0),
53 smoothed_delay_(0),
54 delay_hist_(),
55 trendline_(0) {}
56
57 TrendlineEstimator::~TrendlineEstimator() {}
58
59 void TrendlineEstimator::Update(double recv_delta_ms,
60 double send_delta_ms,
61 double now_ms) {
62 const double delta_ms = recv_delta_ms - send_delta_ms;
63 ++num_of_deltas_;
64 if (num_of_deltas_ > kDeltaCounterMax) {
65 num_of_deltas_ = kDeltaCounterMax;
66 }
67
68 // Exponential backoff filter.
69 accumulated_delay_ += delta_ms;
70 BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_);
71 smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
72 (1 - smoothing_coef_) * accumulated_delay_;
73 BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_);
74
75 // Simple linear regression.
76 delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_));
77 if (delay_hist_.size() > window_size_) {
78 delay_hist_.pop_front();
79 }
80 if (delay_hist_.size() == window_size_) {
81 trendline_ = LinearFitSlope(delay_hist_);
82 }
83
84 BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_);
85 }
86
87 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698