Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 #include "webrtc/modules/congestion_controller/trendline_estimator.h" | |
| 12 | |
| 13 #include <algorithm> | |
| 14 | |
| 15 #include "webrtc/base/checks.h" | |
| 16 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" | |
| 17 | |
| 18 namespace webrtc { | |
| 19 | |
| 20 namespace { | |
| 21 double LinearFitSlope(const std::list<std::pair<double, double>> points) { | |
| 22 RTC_DCHECK(points.size() >= 2); | |
|
stefan-webrtc
2016/11/16 15:11:20
Perhaps store points.size() in a local variable in
terelius
2016/11/16 15:39:12
Since C++11, size() is required to be constant tim
| |
| 23 // Compute the "center of mass". | |
| 24 double sum_x = 0; | |
| 25 double sum_y = 0; | |
| 26 for (const auto& point : points) { | |
| 27 sum_x += point.first; | |
| 28 sum_y += point.second; | |
| 29 } | |
| 30 double x_avg = sum_x / points.size(); | |
| 31 double y_avg = sum_y / points.size(); | |
| 32 // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 | |
| 33 double numerator = 0; | |
| 34 double denominator = 0; | |
| 35 for (const auto& point : points) { | |
| 36 numerator += (point.first - x_avg) * (point.second - y_avg); | |
| 37 denominator += (point.first - x_avg) * (point.first - x_avg); | |
| 38 } | |
| 39 return numerator / denominator; | |
| 40 } | |
| 41 } // namespace | |
| 42 | |
| 43 enum { kDeltaCounterMax = 1000 }; | |
| 44 | |
| 45 TrendlineEstimator::TrendlineEstimator(size_t window_size, | |
| 46 double smoothing_coef, | |
| 47 double threshold_gain) | |
| 48 : window_size_(window_size), | |
| 49 smoothing_coef_(smoothing_coef), | |
| 50 threshold_gain_(threshold_gain), | |
| 51 num_of_deltas_(0), | |
| 52 accumulated_delay_(0), | |
| 53 smoothed_delay_(0), | |
| 54 delay_hist_(), | |
| 55 trendline_(0) {} | |
| 56 | |
| 57 TrendlineEstimator::~TrendlineEstimator() {} | |
| 58 | |
| 59 void TrendlineEstimator::Update(double recv_delta_ms, | |
| 60 double send_delta_ms, | |
| 61 double now_ms) { | |
| 62 const double delta_ms = recv_delta_ms - send_delta_ms; | |
| 63 ++num_of_deltas_; | |
| 64 if (num_of_deltas_ > kDeltaCounterMax) { | |
| 65 num_of_deltas_ = kDeltaCounterMax; | |
| 66 } | |
| 67 | |
| 68 // Exponential backoff filter. | |
| 69 accumulated_delay_ += delta_ms; | |
| 70 BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_); | |
| 71 smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + | |
| 72 (1 - smoothing_coef_) * accumulated_delay_; | |
| 73 BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_); | |
| 74 | |
| 75 // Simple linear regression. | |
| 76 delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_)); | |
| 77 if (delay_hist_.size() > window_size_) { | |
| 78 delay_hist_.pop_front(); | |
| 79 } | |
| 80 if (delay_hist_.size() == window_size_) { | |
| 81 trendline_ = LinearFitSlope(delay_hist_); | |
| 82 } | |
| 83 | |
| 84 BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_); | |
| 85 } | |
| 86 | |
| 87 } // namespace webrtc | |
| OLD | NEW |