OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 #include "webrtc/modules/congestion_controller/trendline_estimator.h" | |
12 | |
13 #include <algorithm> | |
14 | |
15 #include "webrtc/base/checks.h" | |
16 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" | |
17 | |
18 namespace webrtc { | |
19 | |
20 namespace { | |
21 double LinearFitSlope(const std::list<std::pair<double, double>> points) { | |
22 RTC_DCHECK(points.size() >= 2); | |
stefan-webrtc
2016/11/16 15:11:20
Perhaps store points.size() in a local variable in
terelius
2016/11/16 15:39:12
Since C++11, size() is required to be constant tim
| |
23 // Compute the "center of mass". | |
24 double sum_x = 0; | |
25 double sum_y = 0; | |
26 for (const auto& point : points) { | |
27 sum_x += point.first; | |
28 sum_y += point.second; | |
29 } | |
30 double x_avg = sum_x / points.size(); | |
31 double y_avg = sum_y / points.size(); | |
32 // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 | |
33 double numerator = 0; | |
34 double denominator = 0; | |
35 for (const auto& point : points) { | |
36 numerator += (point.first - x_avg) * (point.second - y_avg); | |
37 denominator += (point.first - x_avg) * (point.first - x_avg); | |
38 } | |
39 return numerator / denominator; | |
40 } | |
41 } // namespace | |
42 | |
43 enum { kDeltaCounterMax = 1000 }; | |
44 | |
45 TrendlineEstimator::TrendlineEstimator(size_t window_size, | |
46 double smoothing_coef, | |
47 double threshold_gain) | |
48 : window_size_(window_size), | |
49 smoothing_coef_(smoothing_coef), | |
50 threshold_gain_(threshold_gain), | |
51 num_of_deltas_(0), | |
52 accumulated_delay_(0), | |
53 smoothed_delay_(0), | |
54 delay_hist_(), | |
55 trendline_(0) {} | |
56 | |
57 TrendlineEstimator::~TrendlineEstimator() {} | |
58 | |
59 void TrendlineEstimator::Update(double recv_delta_ms, | |
60 double send_delta_ms, | |
61 double now_ms) { | |
62 const double delta_ms = recv_delta_ms - send_delta_ms; | |
63 ++num_of_deltas_; | |
64 if (num_of_deltas_ > kDeltaCounterMax) { | |
65 num_of_deltas_ = kDeltaCounterMax; | |
66 } | |
67 | |
68 // Exponential backoff filter. | |
69 accumulated_delay_ += delta_ms; | |
70 BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_); | |
71 smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + | |
72 (1 - smoothing_coef_) * accumulated_delay_; | |
73 BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_); | |
74 | |
75 // Simple linear regression. | |
76 delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_)); | |
77 if (delay_hist_.size() > window_size_) { | |
78 delay_hist_.pop_front(); | |
79 } | |
80 if (delay_hist_.size() == window_size_) { | |
81 trendline_ = LinearFitSlope(delay_hist_); | |
82 } | |
83 | |
84 BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_); | |
85 } | |
86 | |
87 } // namespace webrtc | |
OLD | NEW |