Index: webrtc/modules/congestion_controller/trendline_estimator.cc |
diff --git a/webrtc/modules/congestion_controller/trendline_estimator.cc b/webrtc/modules/congestion_controller/trendline_estimator.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..a086f6aaa1bae4055caddaa77fa3d48962f7bcdf |
--- /dev/null |
+++ b/webrtc/modules/congestion_controller/trendline_estimator.cc |
@@ -0,0 +1,87 @@ |
+/* |
+ * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "webrtc/modules/congestion_controller/trendline_estimator.h" |
+ |
+#include <algorithm> |
+ |
+#include "webrtc/base/checks.h" |
+#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" |
+ |
+namespace webrtc { |
+ |
+namespace { |
+double LinearFitSlope(const std::list<std::pair<double, double>> points) { |
+ RTC_DCHECK(points.size() >= 2); |
+ // Compute the "center of mass". |
+ double sum_x = 0; |
+ double sum_y = 0; |
+ for (const auto& point : points) { |
+ sum_x += point.first; |
+ sum_y += point.second; |
+ } |
+ double x_avg = sum_x / points.size(); |
+ double y_avg = sum_y / points.size(); |
+ // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 |
+ double numerator = 0; |
+ double denominator = 0; |
+ for (const auto& point : points) { |
+ numerator += (point.first - x_avg) * (point.second - y_avg); |
+ denominator += (point.first - x_avg) * (point.first - x_avg); |
+ } |
+ return numerator / denominator; |
+} |
+} // namespace |
+ |
+enum { kDeltaCounterMax = 1000 }; |
+ |
+TrendlineEstimator::TrendlineEstimator(size_t window_size, |
+ double smoothing_coef, |
+ double threshold_gain) |
+ : window_size_(window_size), |
+ smoothing_coef_(smoothing_coef), |
+ threshold_gain_(threshold_gain), |
+ num_of_deltas_(0), |
+ accumulated_delay_(0), |
+ smoothed_delay_(0), |
+ delay_hist_(), |
+ trendline_(0) {} |
+ |
+TrendlineEstimator::~TrendlineEstimator() {} |
+ |
+void TrendlineEstimator::Update(double recv_delta_ms, |
+ double send_delta_ms, |
+ double now_ms) { |
+ const double delta_ms = recv_delta_ms - send_delta_ms; |
+ ++num_of_deltas_; |
+ if (num_of_deltas_ > kDeltaCounterMax) { |
+ num_of_deltas_ = kDeltaCounterMax; |
+ } |
+ |
+ // Exponential backoff filter. |
+ accumulated_delay_ += delta_ms; |
+ BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_); |
+ smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + |
+ (1 - smoothing_coef_) * accumulated_delay_; |
+ BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_); |
+ |
+ // Simple linear regression. |
+ delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_)); |
+ if (delay_hist_.size() > window_size_) { |
+ delay_hist_.pop_front(); |
+ } |
+ if (delay_hist_.size() == window_size_) { |
+ trendline_ = LinearFitSlope(delay_hist_); |
+ } |
+ |
+ BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_); |
+} |
+ |
+} // namespace webrtc |