| Index: webrtc/modules/congestion_controller/trendline_estimator.cc
|
| diff --git a/webrtc/modules/congestion_controller/trendline_estimator.cc b/webrtc/modules/congestion_controller/trendline_estimator.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..a086f6aaa1bae4055caddaa77fa3d48962f7bcdf
|
| --- /dev/null
|
| +++ b/webrtc/modules/congestion_controller/trendline_estimator.cc
|
| @@ -0,0 +1,87 @@
|
| +/*
|
| + * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/congestion_controller/trendline_estimator.h"
|
| +
|
| +#include <algorithm>
|
| +
|
| +#include "webrtc/base/checks.h"
|
| +#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
|
| +
|
| +namespace webrtc {
|
| +
|
| +namespace {
|
| +double LinearFitSlope(const std::list<std::pair<double, double>> points) {
|
| + RTC_DCHECK(points.size() >= 2);
|
| + // Compute the "center of mass".
|
| + double sum_x = 0;
|
| + double sum_y = 0;
|
| + for (const auto& point : points) {
|
| + sum_x += point.first;
|
| + sum_y += point.second;
|
| + }
|
| + double x_avg = sum_x / points.size();
|
| + double y_avg = sum_y / points.size();
|
| + // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
|
| + double numerator = 0;
|
| + double denominator = 0;
|
| + for (const auto& point : points) {
|
| + numerator += (point.first - x_avg) * (point.second - y_avg);
|
| + denominator += (point.first - x_avg) * (point.first - x_avg);
|
| + }
|
| + return numerator / denominator;
|
| +}
|
| +} // namespace
|
| +
|
| +enum { kDeltaCounterMax = 1000 };
|
| +
|
| +TrendlineEstimator::TrendlineEstimator(size_t window_size,
|
| + double smoothing_coef,
|
| + double threshold_gain)
|
| + : window_size_(window_size),
|
| + smoothing_coef_(smoothing_coef),
|
| + threshold_gain_(threshold_gain),
|
| + num_of_deltas_(0),
|
| + accumulated_delay_(0),
|
| + smoothed_delay_(0),
|
| + delay_hist_(),
|
| + trendline_(0) {}
|
| +
|
| +TrendlineEstimator::~TrendlineEstimator() {}
|
| +
|
| +void TrendlineEstimator::Update(double recv_delta_ms,
|
| + double send_delta_ms,
|
| + double now_ms) {
|
| + const double delta_ms = recv_delta_ms - send_delta_ms;
|
| + ++num_of_deltas_;
|
| + if (num_of_deltas_ > kDeltaCounterMax) {
|
| + num_of_deltas_ = kDeltaCounterMax;
|
| + }
|
| +
|
| + // Exponential backoff filter.
|
| + accumulated_delay_ += delta_ms;
|
| + BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_);
|
| + smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
|
| + (1 - smoothing_coef_) * accumulated_delay_;
|
| + BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_);
|
| +
|
| + // Simple linear regression.
|
| + delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_));
|
| + if (delay_hist_.size() > window_size_) {
|
| + delay_hist_.pop_front();
|
| + }
|
| + if (delay_hist_.size() == window_size_) {
|
| + trendline_ = LinearFitSlope(delay_hist_);
|
| + }
|
| +
|
| + BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_);
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|