OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ |
| 10 |
| 11 #include "webrtc/modules/congestion_controller/trendline_estimator.h" |
| 12 |
| 13 #include <algorithm> |
| 14 |
| 15 #include "webrtc/base/checks.h" |
| 16 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" |
| 17 |
| 18 namespace webrtc { |
| 19 |
| 20 namespace { |
| 21 double LinearFitSlope(const std::list<std::pair<double, double>> points) { |
| 22 RTC_DCHECK(points.size() >= 2); |
| 23 // Compute the "center of mass". |
| 24 double sum_x = 0; |
| 25 double sum_y = 0; |
| 26 for (const auto& point : points) { |
| 27 sum_x += point.first; |
| 28 sum_y += point.second; |
| 29 } |
| 30 double x_avg = sum_x / points.size(); |
| 31 double y_avg = sum_y / points.size(); |
| 32 // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 |
| 33 double numerator = 0; |
| 34 double denominator = 0; |
| 35 for (const auto& point : points) { |
| 36 numerator += (point.first - x_avg) * (point.second - y_avg); |
| 37 denominator += (point.first - x_avg) * (point.first - x_avg); |
| 38 } |
| 39 return numerator / denominator; |
| 40 } |
| 41 } // namespace |
| 42 |
| 43 enum { kDeltaCounterMax = 1000 }; |
| 44 |
| 45 TrendlineEstimator::TrendlineEstimator(size_t window_size, |
| 46 double smoothing_coef, |
| 47 double threshold_gain) |
| 48 : window_size_(window_size), |
| 49 smoothing_coef_(smoothing_coef), |
| 50 threshold_gain_(threshold_gain), |
| 51 num_of_deltas_(0), |
| 52 accumulated_delay_(0), |
| 53 smoothed_delay_(0), |
| 54 delay_hist_(), |
| 55 trendline_(0) {} |
| 56 |
| 57 TrendlineEstimator::~TrendlineEstimator() {} |
| 58 |
| 59 void TrendlineEstimator::Update(double recv_delta_ms, |
| 60 double send_delta_ms, |
| 61 double now_ms) { |
| 62 const double delta_ms = recv_delta_ms - send_delta_ms; |
| 63 ++num_of_deltas_; |
| 64 if (num_of_deltas_ > kDeltaCounterMax) { |
| 65 num_of_deltas_ = kDeltaCounterMax; |
| 66 } |
| 67 |
| 68 // Exponential backoff filter. |
| 69 accumulated_delay_ += delta_ms; |
| 70 BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_); |
| 71 smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + |
| 72 (1 - smoothing_coef_) * accumulated_delay_; |
| 73 BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_); |
| 74 |
| 75 // Simple linear regression. |
| 76 delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_)); |
| 77 if (delay_hist_.size() > window_size_) { |
| 78 delay_hist_.pop_front(); |
| 79 } |
| 80 if (delay_hist_.size() == window_size_) { |
| 81 trendline_ = LinearFitSlope(delay_hist_); |
| 82 } |
| 83 |
| 84 BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_); |
| 85 } |
| 86 |
| 87 } // namespace webrtc |
OLD | NEW |