| Index: webrtc/api/java/android/org/webrtc/RendererCommon.java
|
| diff --git a/webrtc/api/java/android/org/webrtc/RendererCommon.java b/webrtc/api/java/android/org/webrtc/RendererCommon.java
|
| deleted file mode 100644
|
| index 55547eb2087475bb819dacf929b5d51dc4397595..0000000000000000000000000000000000000000
|
| --- a/webrtc/api/java/android/org/webrtc/RendererCommon.java
|
| +++ /dev/null
|
| @@ -1,246 +0,0 @@
|
| -/*
|
| - * Copyright 2015 The WebRTC project authors. All Rights Reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -package org.webrtc;
|
| -
|
| -import android.graphics.Point;
|
| -import android.opengl.GLES20;
|
| -import android.opengl.Matrix;
|
| -
|
| -import java.nio.ByteBuffer;
|
| -
|
| -/**
|
| - * Static helper functions for renderer implementations.
|
| - */
|
| -public class RendererCommon {
|
| - /** Interface for reporting rendering events. */
|
| - public static interface RendererEvents {
|
| - /**
|
| - * Callback fired once first frame is rendered.
|
| - */
|
| - public void onFirstFrameRendered();
|
| -
|
| - /**
|
| - * Callback fired when rendered frame resolution or rotation has changed.
|
| - */
|
| - public void onFrameResolutionChanged(int videoWidth, int videoHeight, int rotation);
|
| - }
|
| -
|
| - /** Interface for rendering frames on an EGLSurface. */
|
| - public static interface GlDrawer {
|
| - /**
|
| - * Functions for drawing frames with different sources. The rendering surface target is
|
| - * implied by the current EGL context of the calling thread and requires no explicit argument.
|
| - * The coordinates specify the viewport location on the surface target.
|
| - */
|
| - void drawOes(int oesTextureId, float[] texMatrix, int frameWidth, int frameHeight,
|
| - int viewportX, int viewportY, int viewportWidth, int viewportHeight);
|
| - void drawRgb(int textureId, float[] texMatrix, int frameWidth, int frameHeight,
|
| - int viewportX, int viewportY, int viewportWidth, int viewportHeight);
|
| - void drawYuv(int[] yuvTextures, float[] texMatrix, int frameWidth, int frameHeight,
|
| - int viewportX, int viewportY, int viewportWidth, int viewportHeight);
|
| -
|
| - /**
|
| - * Release all GL resources. This needs to be done manually, otherwise resources may leak.
|
| - */
|
| - void release();
|
| - }
|
| -
|
| - /**
|
| - * Helper class for uploading YUV bytebuffer frames to textures that handles stride > width. This
|
| - * class keeps an internal ByteBuffer to avoid unnecessary allocations for intermediate copies.
|
| - */
|
| - public static class YuvUploader {
|
| - // Intermediate copy buffer for uploading yuv frames that are not packed, i.e. stride > width.
|
| - // TODO(magjed): Investigate when GL_UNPACK_ROW_LENGTH is available, or make a custom shader
|
| - // that handles stride and compare performance with intermediate copy.
|
| - private ByteBuffer copyBuffer;
|
| -
|
| - /**
|
| - * Upload |planes| into |outputYuvTextures|, taking stride into consideration.
|
| - * |outputYuvTextures| must have been generated in advance.
|
| - */
|
| - public void uploadYuvData(
|
| - int[] outputYuvTextures, int width, int height, int[] strides, ByteBuffer[] planes) {
|
| - final int[] planeWidths = new int[] {width, width / 2, width / 2};
|
| - final int[] planeHeights = new int[] {height, height / 2, height / 2};
|
| - // Make a first pass to see if we need a temporary copy buffer.
|
| - int copyCapacityNeeded = 0;
|
| - for (int i = 0; i < 3; ++i) {
|
| - if (strides[i] > planeWidths[i]) {
|
| - copyCapacityNeeded = Math.max(copyCapacityNeeded, planeWidths[i] * planeHeights[i]);
|
| - }
|
| - }
|
| - // Allocate copy buffer if necessary.
|
| - if (copyCapacityNeeded > 0
|
| - && (copyBuffer == null || copyBuffer.capacity() < copyCapacityNeeded)) {
|
| - copyBuffer = ByteBuffer.allocateDirect(copyCapacityNeeded);
|
| - }
|
| - // Upload each plane.
|
| - for (int i = 0; i < 3; ++i) {
|
| - GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
|
| - GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, outputYuvTextures[i]);
|
| - // GLES only accepts packed data, i.e. stride == planeWidth.
|
| - final ByteBuffer packedByteBuffer;
|
| - if (strides[i] == planeWidths[i]) {
|
| - // Input is packed already.
|
| - packedByteBuffer = planes[i];
|
| - } else {
|
| - VideoRenderer.nativeCopyPlane(
|
| - planes[i], planeWidths[i], planeHeights[i], strides[i], copyBuffer, planeWidths[i]);
|
| - packedByteBuffer = copyBuffer;
|
| - }
|
| - GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_LUMINANCE, planeWidths[i],
|
| - planeHeights[i], 0, GLES20.GL_LUMINANCE, GLES20.GL_UNSIGNED_BYTE, packedByteBuffer);
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Types of video scaling:
|
| - // SCALE_ASPECT_FIT - video frame is scaled to fit the size of the view by
|
| - // maintaining the aspect ratio (black borders may be displayed).
|
| - // SCALE_ASPECT_FILL - video frame is scaled to fill the size of the view by
|
| - // maintaining the aspect ratio. Some portion of the video frame may be
|
| - // clipped.
|
| - // SCALE_ASPECT_BALANCED - Compromise between FIT and FILL. Video frame will fill as much as
|
| - // possible of the view while maintaining aspect ratio, under the constraint that at least
|
| - // |BALANCED_VISIBLE_FRACTION| of the frame content will be shown.
|
| - public static enum ScalingType { SCALE_ASPECT_FIT, SCALE_ASPECT_FILL, SCALE_ASPECT_BALANCED }
|
| - // The minimum fraction of the frame content that will be shown for |SCALE_ASPECT_BALANCED|.
|
| - // This limits excessive cropping when adjusting display size.
|
| - private static float BALANCED_VISIBLE_FRACTION = 0.5625f;
|
| - public static final float[] identityMatrix() {
|
| - return new float[] {
|
| - 1, 0, 0, 0,
|
| - 0, 1, 0, 0,
|
| - 0, 0, 1, 0,
|
| - 0, 0, 0, 1};
|
| - }
|
| - // Matrix with transform y' = 1 - y.
|
| - public static final float[] verticalFlipMatrix() {
|
| - return new float[] {
|
| - 1, 0, 0, 0,
|
| - 0, -1, 0, 0,
|
| - 0, 0, 1, 0,
|
| - 0, 1, 0, 1};
|
| - }
|
| -
|
| - // Matrix with transform x' = 1 - x.
|
| - public static final float[] horizontalFlipMatrix() {
|
| - return new float[] {
|
| - -1, 0, 0, 0,
|
| - 0, 1, 0, 0,
|
| - 0, 0, 1, 0,
|
| - 1, 0, 0, 1};
|
| - }
|
| -
|
| - /**
|
| - * Returns texture matrix that will have the effect of rotating the frame |rotationDegree|
|
| - * clockwise when rendered.
|
| - */
|
| - public static float[] rotateTextureMatrix(float[] textureMatrix, float rotationDegree) {
|
| - final float[] rotationMatrix = new float[16];
|
| - Matrix.setRotateM(rotationMatrix, 0, rotationDegree, 0, 0, 1);
|
| - adjustOrigin(rotationMatrix);
|
| - return multiplyMatrices(textureMatrix, rotationMatrix);
|
| - }
|
| -
|
| - /**
|
| - * Returns new matrix with the result of a * b.
|
| - */
|
| - public static float[] multiplyMatrices(float[] a, float[] b) {
|
| - final float[] resultMatrix = new float[16];
|
| - Matrix.multiplyMM(resultMatrix, 0, a, 0, b, 0);
|
| - return resultMatrix;
|
| - }
|
| -
|
| - /**
|
| - * Returns layout transformation matrix that applies an optional mirror effect and compensates
|
| - * for video vs display aspect ratio.
|
| - */
|
| - public static float[] getLayoutMatrix(
|
| - boolean mirror, float videoAspectRatio, float displayAspectRatio) {
|
| - float scaleX = 1;
|
| - float scaleY = 1;
|
| - // Scale X or Y dimension so that video and display size have same aspect ratio.
|
| - if (displayAspectRatio > videoAspectRatio) {
|
| - scaleY = videoAspectRatio / displayAspectRatio;
|
| - } else {
|
| - scaleX = displayAspectRatio / videoAspectRatio;
|
| - }
|
| - // Apply optional horizontal flip.
|
| - if (mirror) {
|
| - scaleX *= -1;
|
| - }
|
| - final float matrix[] = new float[16];
|
| - Matrix.setIdentityM(matrix, 0);
|
| - Matrix.scaleM(matrix, 0, scaleX, scaleY, 1);
|
| - adjustOrigin(matrix);
|
| - return matrix;
|
| - }
|
| -
|
| - /**
|
| - * Calculate display size based on scaling type, video aspect ratio, and maximum display size.
|
| - */
|
| - public static Point getDisplaySize(ScalingType scalingType, float videoAspectRatio,
|
| - int maxDisplayWidth, int maxDisplayHeight) {
|
| - return getDisplaySize(convertScalingTypeToVisibleFraction(scalingType), videoAspectRatio,
|
| - maxDisplayWidth, maxDisplayHeight);
|
| - }
|
| -
|
| - /**
|
| - * Move |matrix| transformation origin to (0.5, 0.5). This is the origin for texture coordinates
|
| - * that are in the range 0 to 1.
|
| - */
|
| - private static void adjustOrigin(float[] matrix) {
|
| - // Note that OpenGL is using column-major order.
|
| - // Pre translate with -0.5 to move coordinates to range [-0.5, 0.5].
|
| - matrix[12] -= 0.5f * (matrix[0] + matrix[4]);
|
| - matrix[13] -= 0.5f * (matrix[1] + matrix[5]);
|
| - // Post translate with 0.5 to move coordinates to range [0, 1].
|
| - matrix[12] += 0.5f;
|
| - matrix[13] += 0.5f;
|
| - }
|
| -
|
| - /**
|
| - * Each scaling type has a one-to-one correspondence to a numeric minimum fraction of the video
|
| - * that must remain visible.
|
| - */
|
| - private static float convertScalingTypeToVisibleFraction(ScalingType scalingType) {
|
| - switch (scalingType) {
|
| - case SCALE_ASPECT_FIT:
|
| - return 1.0f;
|
| - case SCALE_ASPECT_FILL:
|
| - return 0.0f;
|
| - case SCALE_ASPECT_BALANCED:
|
| - return BALANCED_VISIBLE_FRACTION;
|
| - default:
|
| - throw new IllegalArgumentException();
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Calculate display size based on minimum fraction of the video that must remain visible,
|
| - * video aspect ratio, and maximum display size.
|
| - */
|
| - private static Point getDisplaySize(float minVisibleFraction, float videoAspectRatio,
|
| - int maxDisplayWidth, int maxDisplayHeight) {
|
| - // If there is no constraint on the amount of cropping, fill the allowed display area.
|
| - if (minVisibleFraction == 0 || videoAspectRatio == 0) {
|
| - return new Point(maxDisplayWidth, maxDisplayHeight);
|
| - }
|
| - // Each dimension is constrained on max display size and how much we are allowed to crop.
|
| - final int width = Math.min(maxDisplayWidth,
|
| - Math.round(maxDisplayHeight / minVisibleFraction * videoAspectRatio));
|
| - final int height = Math.min(maxDisplayHeight,
|
| - Math.round(maxDisplayWidth / minVisibleFraction / videoAspectRatio));
|
| - return new Point(width, height);
|
| - }
|
| -}
|
|
|