Index: webrtc/api/java/android/org/webrtc/RendererCommon.java |
diff --git a/webrtc/api/java/android/org/webrtc/RendererCommon.java b/webrtc/api/java/android/org/webrtc/RendererCommon.java |
deleted file mode 100644 |
index 55547eb2087475bb819dacf929b5d51dc4397595..0000000000000000000000000000000000000000 |
--- a/webrtc/api/java/android/org/webrtc/RendererCommon.java |
+++ /dev/null |
@@ -1,246 +0,0 @@ |
-/* |
- * Copyright 2015 The WebRTC project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-package org.webrtc; |
- |
-import android.graphics.Point; |
-import android.opengl.GLES20; |
-import android.opengl.Matrix; |
- |
-import java.nio.ByteBuffer; |
- |
-/** |
- * Static helper functions for renderer implementations. |
- */ |
-public class RendererCommon { |
- /** Interface for reporting rendering events. */ |
- public static interface RendererEvents { |
- /** |
- * Callback fired once first frame is rendered. |
- */ |
- public void onFirstFrameRendered(); |
- |
- /** |
- * Callback fired when rendered frame resolution or rotation has changed. |
- */ |
- public void onFrameResolutionChanged(int videoWidth, int videoHeight, int rotation); |
- } |
- |
- /** Interface for rendering frames on an EGLSurface. */ |
- public static interface GlDrawer { |
- /** |
- * Functions for drawing frames with different sources. The rendering surface target is |
- * implied by the current EGL context of the calling thread and requires no explicit argument. |
- * The coordinates specify the viewport location on the surface target. |
- */ |
- void drawOes(int oesTextureId, float[] texMatrix, int frameWidth, int frameHeight, |
- int viewportX, int viewportY, int viewportWidth, int viewportHeight); |
- void drawRgb(int textureId, float[] texMatrix, int frameWidth, int frameHeight, |
- int viewportX, int viewportY, int viewportWidth, int viewportHeight); |
- void drawYuv(int[] yuvTextures, float[] texMatrix, int frameWidth, int frameHeight, |
- int viewportX, int viewportY, int viewportWidth, int viewportHeight); |
- |
- /** |
- * Release all GL resources. This needs to be done manually, otherwise resources may leak. |
- */ |
- void release(); |
- } |
- |
- /** |
- * Helper class for uploading YUV bytebuffer frames to textures that handles stride > width. This |
- * class keeps an internal ByteBuffer to avoid unnecessary allocations for intermediate copies. |
- */ |
- public static class YuvUploader { |
- // Intermediate copy buffer for uploading yuv frames that are not packed, i.e. stride > width. |
- // TODO(magjed): Investigate when GL_UNPACK_ROW_LENGTH is available, or make a custom shader |
- // that handles stride and compare performance with intermediate copy. |
- private ByteBuffer copyBuffer; |
- |
- /** |
- * Upload |planes| into |outputYuvTextures|, taking stride into consideration. |
- * |outputYuvTextures| must have been generated in advance. |
- */ |
- public void uploadYuvData( |
- int[] outputYuvTextures, int width, int height, int[] strides, ByteBuffer[] planes) { |
- final int[] planeWidths = new int[] {width, width / 2, width / 2}; |
- final int[] planeHeights = new int[] {height, height / 2, height / 2}; |
- // Make a first pass to see if we need a temporary copy buffer. |
- int copyCapacityNeeded = 0; |
- for (int i = 0; i < 3; ++i) { |
- if (strides[i] > planeWidths[i]) { |
- copyCapacityNeeded = Math.max(copyCapacityNeeded, planeWidths[i] * planeHeights[i]); |
- } |
- } |
- // Allocate copy buffer if necessary. |
- if (copyCapacityNeeded > 0 |
- && (copyBuffer == null || copyBuffer.capacity() < copyCapacityNeeded)) { |
- copyBuffer = ByteBuffer.allocateDirect(copyCapacityNeeded); |
- } |
- // Upload each plane. |
- for (int i = 0; i < 3; ++i) { |
- GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i); |
- GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, outputYuvTextures[i]); |
- // GLES only accepts packed data, i.e. stride == planeWidth. |
- final ByteBuffer packedByteBuffer; |
- if (strides[i] == planeWidths[i]) { |
- // Input is packed already. |
- packedByteBuffer = planes[i]; |
- } else { |
- VideoRenderer.nativeCopyPlane( |
- planes[i], planeWidths[i], planeHeights[i], strides[i], copyBuffer, planeWidths[i]); |
- packedByteBuffer = copyBuffer; |
- } |
- GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_LUMINANCE, planeWidths[i], |
- planeHeights[i], 0, GLES20.GL_LUMINANCE, GLES20.GL_UNSIGNED_BYTE, packedByteBuffer); |
- } |
- } |
- } |
- |
- // Types of video scaling: |
- // SCALE_ASPECT_FIT - video frame is scaled to fit the size of the view by |
- // maintaining the aspect ratio (black borders may be displayed). |
- // SCALE_ASPECT_FILL - video frame is scaled to fill the size of the view by |
- // maintaining the aspect ratio. Some portion of the video frame may be |
- // clipped. |
- // SCALE_ASPECT_BALANCED - Compromise between FIT and FILL. Video frame will fill as much as |
- // possible of the view while maintaining aspect ratio, under the constraint that at least |
- // |BALANCED_VISIBLE_FRACTION| of the frame content will be shown. |
- public static enum ScalingType { SCALE_ASPECT_FIT, SCALE_ASPECT_FILL, SCALE_ASPECT_BALANCED } |
- // The minimum fraction of the frame content that will be shown for |SCALE_ASPECT_BALANCED|. |
- // This limits excessive cropping when adjusting display size. |
- private static float BALANCED_VISIBLE_FRACTION = 0.5625f; |
- public static final float[] identityMatrix() { |
- return new float[] { |
- 1, 0, 0, 0, |
- 0, 1, 0, 0, |
- 0, 0, 1, 0, |
- 0, 0, 0, 1}; |
- } |
- // Matrix with transform y' = 1 - y. |
- public static final float[] verticalFlipMatrix() { |
- return new float[] { |
- 1, 0, 0, 0, |
- 0, -1, 0, 0, |
- 0, 0, 1, 0, |
- 0, 1, 0, 1}; |
- } |
- |
- // Matrix with transform x' = 1 - x. |
- public static final float[] horizontalFlipMatrix() { |
- return new float[] { |
- -1, 0, 0, 0, |
- 0, 1, 0, 0, |
- 0, 0, 1, 0, |
- 1, 0, 0, 1}; |
- } |
- |
- /** |
- * Returns texture matrix that will have the effect of rotating the frame |rotationDegree| |
- * clockwise when rendered. |
- */ |
- public static float[] rotateTextureMatrix(float[] textureMatrix, float rotationDegree) { |
- final float[] rotationMatrix = new float[16]; |
- Matrix.setRotateM(rotationMatrix, 0, rotationDegree, 0, 0, 1); |
- adjustOrigin(rotationMatrix); |
- return multiplyMatrices(textureMatrix, rotationMatrix); |
- } |
- |
- /** |
- * Returns new matrix with the result of a * b. |
- */ |
- public static float[] multiplyMatrices(float[] a, float[] b) { |
- final float[] resultMatrix = new float[16]; |
- Matrix.multiplyMM(resultMatrix, 0, a, 0, b, 0); |
- return resultMatrix; |
- } |
- |
- /** |
- * Returns layout transformation matrix that applies an optional mirror effect and compensates |
- * for video vs display aspect ratio. |
- */ |
- public static float[] getLayoutMatrix( |
- boolean mirror, float videoAspectRatio, float displayAspectRatio) { |
- float scaleX = 1; |
- float scaleY = 1; |
- // Scale X or Y dimension so that video and display size have same aspect ratio. |
- if (displayAspectRatio > videoAspectRatio) { |
- scaleY = videoAspectRatio / displayAspectRatio; |
- } else { |
- scaleX = displayAspectRatio / videoAspectRatio; |
- } |
- // Apply optional horizontal flip. |
- if (mirror) { |
- scaleX *= -1; |
- } |
- final float matrix[] = new float[16]; |
- Matrix.setIdentityM(matrix, 0); |
- Matrix.scaleM(matrix, 0, scaleX, scaleY, 1); |
- adjustOrigin(matrix); |
- return matrix; |
- } |
- |
- /** |
- * Calculate display size based on scaling type, video aspect ratio, and maximum display size. |
- */ |
- public static Point getDisplaySize(ScalingType scalingType, float videoAspectRatio, |
- int maxDisplayWidth, int maxDisplayHeight) { |
- return getDisplaySize(convertScalingTypeToVisibleFraction(scalingType), videoAspectRatio, |
- maxDisplayWidth, maxDisplayHeight); |
- } |
- |
- /** |
- * Move |matrix| transformation origin to (0.5, 0.5). This is the origin for texture coordinates |
- * that are in the range 0 to 1. |
- */ |
- private static void adjustOrigin(float[] matrix) { |
- // Note that OpenGL is using column-major order. |
- // Pre translate with -0.5 to move coordinates to range [-0.5, 0.5]. |
- matrix[12] -= 0.5f * (matrix[0] + matrix[4]); |
- matrix[13] -= 0.5f * (matrix[1] + matrix[5]); |
- // Post translate with 0.5 to move coordinates to range [0, 1]. |
- matrix[12] += 0.5f; |
- matrix[13] += 0.5f; |
- } |
- |
- /** |
- * Each scaling type has a one-to-one correspondence to a numeric minimum fraction of the video |
- * that must remain visible. |
- */ |
- private static float convertScalingTypeToVisibleFraction(ScalingType scalingType) { |
- switch (scalingType) { |
- case SCALE_ASPECT_FIT: |
- return 1.0f; |
- case SCALE_ASPECT_FILL: |
- return 0.0f; |
- case SCALE_ASPECT_BALANCED: |
- return BALANCED_VISIBLE_FRACTION; |
- default: |
- throw new IllegalArgumentException(); |
- } |
- } |
- |
- /** |
- * Calculate display size based on minimum fraction of the video that must remain visible, |
- * video aspect ratio, and maximum display size. |
- */ |
- private static Point getDisplaySize(float minVisibleFraction, float videoAspectRatio, |
- int maxDisplayWidth, int maxDisplayHeight) { |
- // If there is no constraint on the amount of cropping, fill the allowed display area. |
- if (minVisibleFraction == 0 || videoAspectRatio == 0) { |
- return new Point(maxDisplayWidth, maxDisplayHeight); |
- } |
- // Each dimension is constrained on max display size and how much we are allowed to crop. |
- final int width = Math.min(maxDisplayWidth, |
- Math.round(maxDisplayHeight / minVisibleFraction * videoAspectRatio)); |
- final int height = Math.min(maxDisplayHeight, |
- Math.round(maxDisplayWidth / minVisibleFraction / videoAspectRatio)); |
- return new Point(width, height); |
- } |
-} |