| Index: tools/py_event_log_analyzer/rtp_analyzer.py
|
| diff --git a/tools/py_event_log_analyzer/rtp_analyzer.py b/tools/py_event_log_analyzer/rtp_analyzer.py
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..738079d63c688885f311366de1611b1b594db5e6
|
| --- /dev/null
|
| +++ b/tools/py_event_log_analyzer/rtp_analyzer.py
|
| @@ -0,0 +1,257 @@
|
| +# Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
| +#
|
| +# Use of this source code is governed by a BSD-style license
|
| +# that can be found in the LICENSE file in the root of the source
|
| +# tree. An additional intellectual property rights grant can be found
|
| +# in the file PATENTS. All contributing project authors may
|
| +# be found in the AUTHORS file in the root of the source tree.
|
| +
|
| +"""Displays statistics and plots graphs from RTC protobuf dump."""
|
| +
|
| +from __future__ import division
|
| +from __future__ import print_function
|
| +
|
| +import collections
|
| +import sys
|
| +import matplotlib.pyplot as plt
|
| +import misc
|
| +import numpy
|
| +import pb_parse
|
| +
|
| +
|
| +class RTPStatistics(object):
|
| + """Has methods for calculating and plotting statistics for RTP
|
| + packets.
|
| + """
|
| +
|
| + BANDWIDTH_SMOOTHING_WINDOW_SIZE = 10
|
| +
|
| + def __init__(self, data_points):
|
| + """Initializes object with data_points and computes simple statistics:
|
| + percentages of packets and packet sizes by SSRC.
|
| +
|
| + Args:
|
| + data_points: list of pb_parse.DataPoints on which statistics are
|
| + calculated.
|
| +
|
| + """
|
| +
|
| + self.data_points = data_points
|
| + self.ssrc_frequencies = misc.normalize_counter(
|
| + collections.Counter([pt.ssrc for pt in self.data_points]))
|
| + self.ssrc_size_table = misc.ssrc_normalized_size_table(self.data_points)
|
| + self.bandwidth_kbps = None
|
| + self.smooth_bw_kbps = None
|
| +
|
| + def print_ssrc_info(self, ssrc_id, ssrc):
|
| + """Prints packet and size statistics for a given SSRC.
|
| +
|
| + Args:
|
| + ssrc_id: textual identifier of SSRC printed beside statistics for it.
|
| + ssrc: SSRC by which to filter data and display statistics
|
| + """
|
| + filtered_ssrc = [x for x in self.data_points if x.ssrc == ssrc]
|
| + payloads = misc.normalize_counter(
|
| + collections.Counter([x.payload_type for x in filtered_ssrc]))
|
| +
|
| + payload_info = "payload type(s): {}".format(", ".join(str(x) for x
|
| + in payloads))
|
| + print("{} 0x{:x} {}, {:.2f}% packets, {:.2f}% data".format(
|
| + ssrc_id, ssrc, payload_info, self.ssrc_frequencies[ssrc] * 100,
|
| + self.ssrc_size_table[ssrc] * 100))
|
| + print(" packet sizes:")
|
| + (bin_counts, bin_bounds) = numpy.histogram([x.size for x in
|
| + filtered_ssrc], bins=5,
|
| + density=False)
|
| + bin_proportions = bin_counts / sum(bin_counts)
|
| + print("\n".join([
|
| + " {:.1f} - {:.1f}: {:.2f}%".format(bin_bounds[i], bin_bounds[i + 1],
|
| + bin_proportions[i] * 100)
|
| + for i in range(len(bin_proportions))
|
| + ]))
|
| +
|
| + def choose_ssrc(self):
|
| + """Queries user for SSRC."""
|
| +
|
| + if len(self.ssrc_frequencies) == 1:
|
| + chosen_ssrc = self.ssrc_frequencies[0][-1]
|
| + self.print_ssrc_info("", chosen_ssrc)
|
| + return chosen_ssrc
|
| +
|
| + for (i, ssrc) in enumerate(self.ssrc_frequencies):
|
| + self.print_ssrc_info(i, ssrc)
|
| +
|
| + while True:
|
| + chosen_index = int(misc.get_input("choose one> "))
|
| + if 0 <= chosen_index < len(self.ssrc_frequencies):
|
| + return list(self.ssrc_frequencies)[chosen_index]
|
| + else:
|
| + print("Invalid index!")
|
| +
|
| + def filter_ssrc(self, chosen_ssrc):
|
| + """Filters and wraps data points.
|
| +
|
| + Removes data points with `ssrc != chosen_ssrc`. Unwraps sequence
|
| + numbers and timestamps for the chosen selection.
|
| + """
|
| + self.data_points = [x for x in self.data_points if x.ssrc ==
|
| + chosen_ssrc]
|
| + unwrapped_sequence_numbers = misc.unwrap([x.sequence_number for x in
|
| + self.data_points],
|
| + 2**16 - 1)
|
| + for (data_point, sequence_number) in zip(self.data_points,
|
| + unwrapped_sequence_numbers):
|
| + data_point.sequence_number = sequence_number
|
| +
|
| + unwrapped_timestamps = misc.unwrap([x.timestamp for x in self.data_points],
|
| + 2**32 - 1)
|
| +
|
| + for (data_point, timestamp) in zip(self.data_points,
|
| + unwrapped_timestamps):
|
| + data_point.timestamp = timestamp
|
| +
|
| + def print_sequence_number_statistics(self):
|
| + seq_no_set = set(x.sequence_number for x in self.data_points)
|
| + print("Missing sequence numbers: {} out of {}".format(
|
| + max(seq_no_set) - min(seq_no_set) + 1 - len(seq_no_set),
|
| + len(seq_no_set)
|
| + ))
|
| + print("Duplicated packets: {}".format(len(self.data_points) -
|
| + len(seq_no_set)))
|
| + print("Reordered packets: {}".format(
|
| + misc.count_reordered([x.sequence_number for x in self.data_points])))
|
| +
|
| + def estimate_frequency(self):
|
| + """Estimates frequency and updates data.
|
| +
|
| + Guesses the most probable frequency by looking at changes in
|
| + timestamps (RFC 3550 section 5.1), calculates clock drifts and
|
| + sending time of packets. Updates `self.data_points` with changes
|
| + in delay and send time.
|
| + """
|
| + delta_timestamp = (self.data_points[-1].timestamp -
|
| + self.data_points[0].timestamp)
|
| + delta_arr_timestamp = float((self.data_points[-1].arrival_timestamp_ms -
|
| + self.data_points[0].arrival_timestamp_ms))
|
| + fs_est = delta_timestamp / delta_arr_timestamp
|
| +
|
| + fs_vec = [8, 16, 32, 48, 90]
|
| + fs = None
|
| + for f in fs_vec:
|
| + if abs((fs_est - f) / f) < 0.05:
|
| + fs = f
|
| +
|
| + print("Estimated frequency: {}kHz".format(fs_est))
|
| + if fs is None:
|
| + fs = int(misc.get_input(
|
| + "Frequency could not be guessed. Input frequency (in kHz)> "))
|
| + else:
|
| + print("Guessed frequency: {}kHz".format(fs))
|
| +
|
| + for f in self.data_points:
|
| + f.real_send_time_ms = (f.timestamp -
|
| + self.data_points[0].timestamp) / fs
|
| + f.delay = f.arrival_timestamp_ms - f.real_send_time_ms
|
| +
|
| + def print_duration_statistics(self):
|
| + """Prints delay, clock drift and bitrate statistics.
|
| + """
|
| +
|
| + min_delay = min(f.delay for f in self.data_points)
|
| +
|
| + for f in self.data_points:
|
| + f.absdelay = f.delay - min_delay
|
| +
|
| + stream_duration_sender = self.data_points[-1].real_send_time_ms / 1000
|
| + print("Stream duration at sender: {:.1f} seconds".format(
|
| + stream_duration_sender
|
| + ))
|
| +
|
| + arrival_timestamps_ms = [pt.arrival_timestamp_ms for pt in
|
| + self.data_points]
|
| + stream_duration_receiver = (max(arrival_timestamps_ms) -
|
| + min(arrival_timestamps_ms)) / 1000
|
| + print("Stream duration at receiver: {:.1f} seconds".format(
|
| + stream_duration_receiver
|
| + ))
|
| +
|
| + print("Clock drift: {:.2f}%".format(
|
| + 100 * (stream_duration_receiver / stream_duration_sender - 1)
|
| + ))
|
| +
|
| + total_size = sum(x.size for x in self.data_points) * 8 / 1000
|
| + print("Send average bitrate: {:.2f} kbps".format(
|
| + total_size / stream_duration_sender))
|
| +
|
| + print("Receive average bitrate: {:.2f} kbps".format(
|
| + total_size / stream_duration_receiver))
|
| +
|
| + def remove_reordered(self):
|
| + last = self.data_points[0]
|
| + data_points_ordered = [last]
|
| + for x in self.data_points[1:]:
|
| + if x.sequence_number > last.sequence_number and (x.real_send_time_ms >
|
| + last.real_send_time_ms):
|
| + data_points_ordered.append(x)
|
| + last = x
|
| + self.data_points = data_points_ordered
|
| +
|
| + def compute_bandwidth(self):
|
| + """Computes bandwidth averaged over several consecutive packets.
|
| +
|
| + The number of consecutive packets used in the average is
|
| + BANDWIDTH_SMOOTHING_WINDOW_SIZE. Averaging is done with
|
| + numpy.correlate.
|
| + """
|
| + self.bandwidth_kbps = []
|
| + for i in range(len(self.data_points) - 1):
|
| + self.bandwidth_kbps.append(self.data_points[i].size * 8 /
|
| + (self.data_points[i +
|
| + 1].real_send_time_ms -
|
| + self.data_points[i].real_send_time_ms)
|
| + )
|
| + correlate_filter = (numpy.ones(
|
| + RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE) /
|
| + RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE)
|
| + self.smooth_bw_kbps = numpy.correlate(self.bandwidth_kbps, correlate_filter)
|
| +
|
| + def plot_statistics(self):
|
| + """Plots changes in delay and average bandwidth."""
|
| + plt.figure(1)
|
| + plt.plot([f.real_send_time_ms / 1000 for f in self.data_points],
|
| + [f.absdelay for f in self.data_points])
|
| + plt.xlabel("Send time [s]")
|
| + plt.ylabel("Relative transport delay [ms]")
|
| +
|
| + plt.figure(2)
|
| + plt.plot([f.real_send_time_ms / 1000 for f in
|
| + self.data_points][:len(self.smooth_bw_kbps)],
|
| + self.smooth_bw_kbps[:len(self.data_points)])
|
| + plt.xlabel("Send time [s]")
|
| + plt.ylabel("Bandwidth [kbps]")
|
| +
|
| + plt.show()
|
| +
|
| +
|
| +def main():
|
| +
|
| + if len(sys.argv) < 2:
|
| + print("Usage: python rtp_analyzer.py <filename of rtc event log>")
|
| + sys.exit(0)
|
| +
|
| + data_points = pb_parse.parse_protobuf(sys.argv[1])
|
| + rtp_stats = RTPStatistics(data_points)
|
| + chosen_ssrc = rtp_stats.choose_ssrc()
|
| + print("Chosen SSRC: 0X{:X}".format(chosen_ssrc))
|
| +
|
| + rtp_stats.filter_ssrc(chosen_ssrc)
|
| + print("Statistics:")
|
| + rtp_stats.print_sequence_number_statistics()
|
| + rtp_stats.estimate_frequency()
|
| + rtp_stats.print_duration_statistics()
|
| + rtp_stats.remove_reordered()
|
| + rtp_stats.compute_bandwidth()
|
| + rtp_stats.plot_statistics()
|
| +
|
| +if __name__ == "__main__":
|
| + main()
|
|
|