Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(161)

Unified Diff: tools/py_event_log_analyzer/rtp_analyzer.py

Issue 1999113002: New rtc dump analyzing tool in Python (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Moved unit test. Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: tools/py_event_log_analyzer/rtp_analyzer.py
diff --git a/tools/py_event_log_analyzer/rtp_analyzer.py b/tools/py_event_log_analyzer/rtp_analyzer.py
new file mode 100644
index 0000000000000000000000000000000000000000..738079d63c688885f311366de1611b1b594db5e6
--- /dev/null
+++ b/tools/py_event_log_analyzer/rtp_analyzer.py
@@ -0,0 +1,257 @@
+# Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
+#
+# Use of this source code is governed by a BSD-style license
+# that can be found in the LICENSE file in the root of the source
+# tree. An additional intellectual property rights grant can be found
+# in the file PATENTS. All contributing project authors may
+# be found in the AUTHORS file in the root of the source tree.
+
+"""Displays statistics and plots graphs from RTC protobuf dump."""
+
+from __future__ import division
+from __future__ import print_function
+
+import collections
+import sys
+import matplotlib.pyplot as plt
+import misc
+import numpy
+import pb_parse
+
+
+class RTPStatistics(object):
+ """Has methods for calculating and plotting statistics for RTP
+ packets.
+ """
+
+ BANDWIDTH_SMOOTHING_WINDOW_SIZE = 10
+
+ def __init__(self, data_points):
+ """Initializes object with data_points and computes simple statistics:
+ percentages of packets and packet sizes by SSRC.
+
+ Args:
+ data_points: list of pb_parse.DataPoints on which statistics are
+ calculated.
+
+ """
+
+ self.data_points = data_points
+ self.ssrc_frequencies = misc.normalize_counter(
+ collections.Counter([pt.ssrc for pt in self.data_points]))
+ self.ssrc_size_table = misc.ssrc_normalized_size_table(self.data_points)
+ self.bandwidth_kbps = None
+ self.smooth_bw_kbps = None
+
+ def print_ssrc_info(self, ssrc_id, ssrc):
+ """Prints packet and size statistics for a given SSRC.
+
+ Args:
+ ssrc_id: textual identifier of SSRC printed beside statistics for it.
+ ssrc: SSRC by which to filter data and display statistics
+ """
+ filtered_ssrc = [x for x in self.data_points if x.ssrc == ssrc]
+ payloads = misc.normalize_counter(
+ collections.Counter([x.payload_type for x in filtered_ssrc]))
+
+ payload_info = "payload type(s): {}".format(", ".join(str(x) for x
+ in payloads))
+ print("{} 0x{:x} {}, {:.2f}% packets, {:.2f}% data".format(
+ ssrc_id, ssrc, payload_info, self.ssrc_frequencies[ssrc] * 100,
+ self.ssrc_size_table[ssrc] * 100))
+ print(" packet sizes:")
+ (bin_counts, bin_bounds) = numpy.histogram([x.size for x in
+ filtered_ssrc], bins=5,
+ density=False)
+ bin_proportions = bin_counts / sum(bin_counts)
+ print("\n".join([
+ " {:.1f} - {:.1f}: {:.2f}%".format(bin_bounds[i], bin_bounds[i + 1],
+ bin_proportions[i] * 100)
+ for i in range(len(bin_proportions))
+ ]))
+
+ def choose_ssrc(self):
+ """Queries user for SSRC."""
+
+ if len(self.ssrc_frequencies) == 1:
+ chosen_ssrc = self.ssrc_frequencies[0][-1]
+ self.print_ssrc_info("", chosen_ssrc)
+ return chosen_ssrc
+
+ for (i, ssrc) in enumerate(self.ssrc_frequencies):
+ self.print_ssrc_info(i, ssrc)
+
+ while True:
+ chosen_index = int(misc.get_input("choose one> "))
+ if 0 <= chosen_index < len(self.ssrc_frequencies):
+ return list(self.ssrc_frequencies)[chosen_index]
+ else:
+ print("Invalid index!")
+
+ def filter_ssrc(self, chosen_ssrc):
+ """Filters and wraps data points.
+
+ Removes data points with `ssrc != chosen_ssrc`. Unwraps sequence
+ numbers and timestamps for the chosen selection.
+ """
+ self.data_points = [x for x in self.data_points if x.ssrc ==
+ chosen_ssrc]
+ unwrapped_sequence_numbers = misc.unwrap([x.sequence_number for x in
+ self.data_points],
+ 2**16 - 1)
+ for (data_point, sequence_number) in zip(self.data_points,
+ unwrapped_sequence_numbers):
+ data_point.sequence_number = sequence_number
+
+ unwrapped_timestamps = misc.unwrap([x.timestamp for x in self.data_points],
+ 2**32 - 1)
+
+ for (data_point, timestamp) in zip(self.data_points,
+ unwrapped_timestamps):
+ data_point.timestamp = timestamp
+
+ def print_sequence_number_statistics(self):
+ seq_no_set = set(x.sequence_number for x in self.data_points)
+ print("Missing sequence numbers: {} out of {}".format(
+ max(seq_no_set) - min(seq_no_set) + 1 - len(seq_no_set),
+ len(seq_no_set)
+ ))
+ print("Duplicated packets: {}".format(len(self.data_points) -
+ len(seq_no_set)))
+ print("Reordered packets: {}".format(
+ misc.count_reordered([x.sequence_number for x in self.data_points])))
+
+ def estimate_frequency(self):
+ """Estimates frequency and updates data.
+
+ Guesses the most probable frequency by looking at changes in
+ timestamps (RFC 3550 section 5.1), calculates clock drifts and
+ sending time of packets. Updates `self.data_points` with changes
+ in delay and send time.
+ """
+ delta_timestamp = (self.data_points[-1].timestamp -
+ self.data_points[0].timestamp)
+ delta_arr_timestamp = float((self.data_points[-1].arrival_timestamp_ms -
+ self.data_points[0].arrival_timestamp_ms))
+ fs_est = delta_timestamp / delta_arr_timestamp
+
+ fs_vec = [8, 16, 32, 48, 90]
+ fs = None
+ for f in fs_vec:
+ if abs((fs_est - f) / f) < 0.05:
+ fs = f
+
+ print("Estimated frequency: {}kHz".format(fs_est))
+ if fs is None:
+ fs = int(misc.get_input(
+ "Frequency could not be guessed. Input frequency (in kHz)> "))
+ else:
+ print("Guessed frequency: {}kHz".format(fs))
+
+ for f in self.data_points:
+ f.real_send_time_ms = (f.timestamp -
+ self.data_points[0].timestamp) / fs
+ f.delay = f.arrival_timestamp_ms - f.real_send_time_ms
+
+ def print_duration_statistics(self):
+ """Prints delay, clock drift and bitrate statistics.
+ """
+
+ min_delay = min(f.delay for f in self.data_points)
+
+ for f in self.data_points:
+ f.absdelay = f.delay - min_delay
+
+ stream_duration_sender = self.data_points[-1].real_send_time_ms / 1000
+ print("Stream duration at sender: {:.1f} seconds".format(
+ stream_duration_sender
+ ))
+
+ arrival_timestamps_ms = [pt.arrival_timestamp_ms for pt in
+ self.data_points]
+ stream_duration_receiver = (max(arrival_timestamps_ms) -
+ min(arrival_timestamps_ms)) / 1000
+ print("Stream duration at receiver: {:.1f} seconds".format(
+ stream_duration_receiver
+ ))
+
+ print("Clock drift: {:.2f}%".format(
+ 100 * (stream_duration_receiver / stream_duration_sender - 1)
+ ))
+
+ total_size = sum(x.size for x in self.data_points) * 8 / 1000
+ print("Send average bitrate: {:.2f} kbps".format(
+ total_size / stream_duration_sender))
+
+ print("Receive average bitrate: {:.2f} kbps".format(
+ total_size / stream_duration_receiver))
+
+ def remove_reordered(self):
+ last = self.data_points[0]
+ data_points_ordered = [last]
+ for x in self.data_points[1:]:
+ if x.sequence_number > last.sequence_number and (x.real_send_time_ms >
+ last.real_send_time_ms):
+ data_points_ordered.append(x)
+ last = x
+ self.data_points = data_points_ordered
+
+ def compute_bandwidth(self):
+ """Computes bandwidth averaged over several consecutive packets.
+
+ The number of consecutive packets used in the average is
+ BANDWIDTH_SMOOTHING_WINDOW_SIZE. Averaging is done with
+ numpy.correlate.
+ """
+ self.bandwidth_kbps = []
+ for i in range(len(self.data_points) - 1):
+ self.bandwidth_kbps.append(self.data_points[i].size * 8 /
+ (self.data_points[i +
+ 1].real_send_time_ms -
+ self.data_points[i].real_send_time_ms)
+ )
+ correlate_filter = (numpy.ones(
+ RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE) /
+ RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE)
+ self.smooth_bw_kbps = numpy.correlate(self.bandwidth_kbps, correlate_filter)
+
+ def plot_statistics(self):
+ """Plots changes in delay and average bandwidth."""
+ plt.figure(1)
+ plt.plot([f.real_send_time_ms / 1000 for f in self.data_points],
+ [f.absdelay for f in self.data_points])
+ plt.xlabel("Send time [s]")
+ plt.ylabel("Relative transport delay [ms]")
+
+ plt.figure(2)
+ plt.plot([f.real_send_time_ms / 1000 for f in
+ self.data_points][:len(self.smooth_bw_kbps)],
+ self.smooth_bw_kbps[:len(self.data_points)])
+ plt.xlabel("Send time [s]")
+ plt.ylabel("Bandwidth [kbps]")
+
+ plt.show()
+
+
+def main():
+
+ if len(sys.argv) < 2:
+ print("Usage: python rtp_analyzer.py <filename of rtc event log>")
+ sys.exit(0)
+
+ data_points = pb_parse.parse_protobuf(sys.argv[1])
+ rtp_stats = RTPStatistics(data_points)
+ chosen_ssrc = rtp_stats.choose_ssrc()
+ print("Chosen SSRC: 0X{:X}".format(chosen_ssrc))
+
+ rtp_stats.filter_ssrc(chosen_ssrc)
+ print("Statistics:")
+ rtp_stats.print_sequence_number_statistics()
+ rtp_stats.estimate_frequency()
+ rtp_stats.print_duration_statistics()
+ rtp_stats.remove_reordered()
+ rtp_stats.compute_bandwidth()
+ rtp_stats.plot_statistics()
+
+if __name__ == "__main__":
+ main()
« tools/py_event_log_analyzer/pb_parse.py ('K') | « tools/py_event_log_analyzer/pb_parse.py ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698