OLD | NEW |
(Empty) | |
| 1 # Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| 2 # |
| 3 # Use of this source code is governed by a BSD-style license |
| 4 # that can be found in the LICENSE file in the root of the source |
| 5 # tree. An additional intellectual property rights grant can be found |
| 6 # in the file PATENTS. All contributing project authors may |
| 7 # be found in the AUTHORS file in the root of the source tree. |
| 8 |
| 9 """Displays statistics and plots graphs from RTC protobuf dump.""" |
| 10 |
| 11 from __future__ import division |
| 12 from __future__ import print_function |
| 13 |
| 14 import collections |
| 15 import sys |
| 16 import matplotlib.pyplot as plt |
| 17 import misc |
| 18 import numpy |
| 19 import pb_parse |
| 20 |
| 21 |
| 22 class RTPStatistics(object): |
| 23 """Has methods for calculating and plotting statistics for RTP |
| 24 packets. |
| 25 """ |
| 26 |
| 27 BANDWIDTH_SMOOTHING_WINDOW_SIZE = 10 |
| 28 |
| 29 def __init__(self, data_points): |
| 30 """Initializes object with data_points and computes simple statistics: |
| 31 percentages of packets and packet sizes by SSRC. |
| 32 |
| 33 Args: |
| 34 data_points: list of pb_parse.DataPoints on which statistics are |
| 35 calculated. |
| 36 |
| 37 """ |
| 38 |
| 39 self.data_points = data_points |
| 40 self.ssrc_frequencies = misc.normalize_counter( |
| 41 collections.Counter([pt.ssrc for pt in self.data_points])) |
| 42 self.ssrc_size_table = misc.ssrc_normalized_size_table(self.data_points) |
| 43 self.bandwidth_kbps = None |
| 44 self.smooth_bw_kbps = None |
| 45 |
| 46 def print_ssrc_info(self, ssrc_id, ssrc): |
| 47 """Prints packet and size statistics for a given SSRC. |
| 48 |
| 49 Args: |
| 50 ssrc_id: textual identifier of SSRC printed beside statistics for it. |
| 51 ssrc: SSRC by which to filter data and display statistics |
| 52 """ |
| 53 filtered_ssrc = [x for x in self.data_points if x.ssrc == ssrc] |
| 54 payloads = misc.normalize_counter( |
| 55 collections.Counter([x.payload_type for x in filtered_ssrc])) |
| 56 |
| 57 payload_info = "payload type(s): {}".format(", ".join(str(x) for x |
| 58 in payloads)) |
| 59 print("{} 0x{:x} {}, {:.2f}% packets, {:.2f}% data".format( |
| 60 ssrc_id, ssrc, payload_info, self.ssrc_frequencies[ssrc] * 100, |
| 61 self.ssrc_size_table[ssrc] * 100)) |
| 62 print(" packet sizes:") |
| 63 (bin_counts, bin_bounds) = numpy.histogram([x.size for x in |
| 64 filtered_ssrc], bins=5, |
| 65 density=False) |
| 66 bin_proportions = bin_counts / sum(bin_counts) |
| 67 print("\n".join([ |
| 68 " {:.1f} - {:.1f}: {:.2f}%".format(bin_bounds[i], bin_bounds[i + 1], |
| 69 bin_proportions[i] * 100) |
| 70 for i in range(len(bin_proportions)) |
| 71 ])) |
| 72 |
| 73 def choose_ssrc(self): |
| 74 """Queries user for SSRC.""" |
| 75 |
| 76 if len(self.ssrc_frequencies) == 1: |
| 77 chosen_ssrc = self.ssrc_frequencies[0][-1] |
| 78 self.print_ssrc_info("", chosen_ssrc) |
| 79 return chosen_ssrc |
| 80 |
| 81 for (i, ssrc) in enumerate(self.ssrc_frequencies): |
| 82 self.print_ssrc_info(i, ssrc) |
| 83 |
| 84 while True: |
| 85 chosen_index = int(misc.get_input("choose one> ")) |
| 86 if 0 <= chosen_index < len(self.ssrc_frequencies): |
| 87 return list(self.ssrc_frequencies)[chosen_index] |
| 88 else: |
| 89 print("Invalid index!") |
| 90 |
| 91 def filter_ssrc(self, chosen_ssrc): |
| 92 """Filters and wraps data points. |
| 93 |
| 94 Removes data points with `ssrc != chosen_ssrc`. Unwraps sequence |
| 95 numbers and timestamps for the chosen selection. |
| 96 """ |
| 97 self.data_points = [x for x in self.data_points if x.ssrc == |
| 98 chosen_ssrc] |
| 99 unwrapped_sequence_numbers = misc.unwrap([x.sequence_number for x in |
| 100 self.data_points], |
| 101 2**16 - 1) |
| 102 for (data_point, sequence_number) in zip(self.data_points, |
| 103 unwrapped_sequence_numbers): |
| 104 data_point.sequence_number = sequence_number |
| 105 |
| 106 unwrapped_timestamps = misc.unwrap([x.timestamp for x in self.data_points], |
| 107 2**32 - 1) |
| 108 |
| 109 for (data_point, timestamp) in zip(self.data_points, |
| 110 unwrapped_timestamps): |
| 111 data_point.timestamp = timestamp |
| 112 |
| 113 def print_sequence_number_statistics(self): |
| 114 seq_no_set = set(x.sequence_number for x in self.data_points) |
| 115 print("Missing sequence numbers: {} out of {}".format( |
| 116 max(seq_no_set) - min(seq_no_set) + 1 - len(seq_no_set), |
| 117 len(seq_no_set) |
| 118 )) |
| 119 print("Duplicated packets: {}".format(len(self.data_points) - |
| 120 len(seq_no_set))) |
| 121 print("Reordered packets: {}".format( |
| 122 misc.count_reordered([x.sequence_number for x in self.data_points]))) |
| 123 |
| 124 def estimate_frequency(self): |
| 125 """Estimates frequency and updates data. |
| 126 |
| 127 Guesses the most probable frequency by looking at changes in |
| 128 timestamps (RFC 3550 section 5.1), calculates clock drifts and |
| 129 sending time of packets. Updates `self.data_points` with changes |
| 130 in delay and send time. |
| 131 """ |
| 132 delta_timestamp = (self.data_points[-1].timestamp - |
| 133 self.data_points[0].timestamp) |
| 134 delta_arr_timestamp = float((self.data_points[-1].arrival_timestamp_ms - |
| 135 self.data_points[0].arrival_timestamp_ms)) |
| 136 fs_est = delta_timestamp / delta_arr_timestamp |
| 137 |
| 138 fs_vec = [8, 16, 32, 48, 90] |
| 139 fs = None |
| 140 for f in fs_vec: |
| 141 if abs((fs_est - f) / f) < 0.05: |
| 142 fs = f |
| 143 |
| 144 print("Estimated frequency: {}kHz".format(fs_est)) |
| 145 if fs is None: |
| 146 fs = int(misc.get_input( |
| 147 "Frequency could not be guessed. Input frequency (in kHz)> ")) |
| 148 else: |
| 149 print("Guessed frequency: {}kHz".format(fs)) |
| 150 |
| 151 for f in self.data_points: |
| 152 f.real_send_time_ms = (f.timestamp - |
| 153 self.data_points[0].timestamp) / fs |
| 154 f.delay = f.arrival_timestamp_ms - f.real_send_time_ms |
| 155 |
| 156 def print_duration_statistics(self): |
| 157 """Prints delay, clock drift and bitrate statistics. |
| 158 """ |
| 159 |
| 160 min_delay = min(f.delay for f in self.data_points) |
| 161 |
| 162 for f in self.data_points: |
| 163 f.absdelay = f.delay - min_delay |
| 164 |
| 165 stream_duration_sender = self.data_points[-1].real_send_time_ms / 1000 |
| 166 print("Stream duration at sender: {:.1f} seconds".format( |
| 167 stream_duration_sender |
| 168 )) |
| 169 |
| 170 arrival_timestamps_ms = [pt.arrival_timestamp_ms for pt in |
| 171 self.data_points] |
| 172 stream_duration_receiver = (max(arrival_timestamps_ms) - |
| 173 min(arrival_timestamps_ms)) / 1000 |
| 174 print("Stream duration at receiver: {:.1f} seconds".format( |
| 175 stream_duration_receiver |
| 176 )) |
| 177 |
| 178 print("Clock drift: {:.2f}%".format( |
| 179 100 * (stream_duration_receiver / stream_duration_sender - 1) |
| 180 )) |
| 181 |
| 182 total_size = sum(x.size for x in self.data_points) * 8 / 1000 |
| 183 print("Send average bitrate: {:.2f} kbps".format( |
| 184 total_size / stream_duration_sender)) |
| 185 |
| 186 print("Receive average bitrate: {:.2f} kbps".format( |
| 187 total_size / stream_duration_receiver)) |
| 188 |
| 189 def remove_reordered(self): |
| 190 last = self.data_points[0] |
| 191 data_points_ordered = [last] |
| 192 for x in self.data_points[1:]: |
| 193 if x.sequence_number > last.sequence_number and (x.real_send_time_ms > |
| 194 last.real_send_time_ms): |
| 195 data_points_ordered.append(x) |
| 196 last = x |
| 197 self.data_points = data_points_ordered |
| 198 |
| 199 def compute_bandwidth(self): |
| 200 """Computes bandwidth averaged over several consecutive packets. |
| 201 |
| 202 The number of consecutive packets used in the average is |
| 203 BANDWIDTH_SMOOTHING_WINDOW_SIZE. Averaging is done with |
| 204 numpy.correlate. |
| 205 """ |
| 206 self.bandwidth_kbps = [] |
| 207 for i in range(len(self.data_points) - 1): |
| 208 self.bandwidth_kbps.append(self.data_points[i].size * 8 / |
| 209 (self.data_points[i + |
| 210 1].real_send_time_ms - |
| 211 self.data_points[i].real_send_time_ms) |
| 212 ) |
| 213 correlate_filter = (numpy.ones( |
| 214 RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE) / |
| 215 RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE) |
| 216 self.smooth_bw_kbps = numpy.correlate(self.bandwidth_kbps, correlate_filter) |
| 217 |
| 218 def plot_statistics(self): |
| 219 """Plots changes in delay and average bandwidth.""" |
| 220 plt.figure(1) |
| 221 plt.plot([f.real_send_time_ms / 1000 for f in self.data_points], |
| 222 [f.absdelay for f in self.data_points]) |
| 223 plt.xlabel("Send time [s]") |
| 224 plt.ylabel("Relative transport delay [ms]") |
| 225 |
| 226 plt.figure(2) |
| 227 plt.plot([f.real_send_time_ms / 1000 for f in |
| 228 self.data_points][:len(self.smooth_bw_kbps)], |
| 229 self.smooth_bw_kbps[:len(self.data_points)]) |
| 230 plt.xlabel("Send time [s]") |
| 231 plt.ylabel("Bandwidth [kbps]") |
| 232 |
| 233 plt.show() |
| 234 |
| 235 |
| 236 def main(): |
| 237 |
| 238 if len(sys.argv) < 2: |
| 239 print("Usage: python rtp_analyzer.py <filename of rtc event log>") |
| 240 sys.exit(0) |
| 241 |
| 242 data_points = pb_parse.parse_protobuf(sys.argv[1]) |
| 243 rtp_stats = RTPStatistics(data_points) |
| 244 chosen_ssrc = rtp_stats.choose_ssrc() |
| 245 print("Chosen SSRC: 0X{:X}".format(chosen_ssrc)) |
| 246 |
| 247 rtp_stats.filter_ssrc(chosen_ssrc) |
| 248 print("Statistics:") |
| 249 rtp_stats.print_sequence_number_statistics() |
| 250 rtp_stats.estimate_frequency() |
| 251 rtp_stats.print_duration_statistics() |
| 252 rtp_stats.remove_reordered() |
| 253 rtp_stats.compute_bandwidth() |
| 254 rtp_stats.plot_statistics() |
| 255 |
| 256 if __name__ == "__main__": |
| 257 main() |
OLD | NEW |