Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(246)

Unified Diff: webrtc/modules/audio_processing/agc/legacy/digital_agc.c

Issue 1998183002: Clang format on AGC legacy code. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/audio_processing/agc/legacy/digital_agc.c
diff --git a/webrtc/modules/audio_processing/agc/legacy/digital_agc.c b/webrtc/modules/audio_processing/agc/legacy/digital_agc.c
index 0881af11dbf4566820100f99c322081fe9d97da5..2ca967a4aae1a0d0a00758b4861a4838b1d11d46 100644
--- a/webrtc/modules/audio_processing/agc/legacy/digital_agc.c
+++ b/webrtc/modules/audio_processing/agc/legacy/digital_agc.c
@@ -27,269 +27,254 @@
// zeros = 0:31; lvl = 2.^(1-zeros);
// A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
// B = MaxGain - MinGain;
-// gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B))))));
+// gains = round(2^16*10.^(0.05 * (MinGain + B * (
+// log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) /
+// log(1/(1+exp(Knee*B))))));
// fprintf(1, '\t%i, %i, %i, %i,\n', gains);
-// % Matlab code for plotting the gain and input/output level characteristic (copy/paste the following 3 lines):
+// % Matlab code for plotting the gain and input/output level characteristic
+// (copy/paste the following 3 lines):
// in = 10*log10(lvl); out = 20*log10(gains/65536);
-// subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input (dB)'); ylabel('Gain (dB)');
-// subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Input (dB)'); ylabel('Output (dB)');
+// subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input
+// (dB)'); ylabel('Gain (dB)');
+// subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on;
+// xlabel('Input (dB)'); ylabel('Output (dB)');
// zoom on;
// Generator table for y=log2(1+e^x) in Q8.
enum { kGenFuncTableSize = 128 };
static const uint16_t kGenFuncTable[kGenFuncTableSize] = {
- 256, 485, 786, 1126, 1484, 1849, 2217, 2586,
- 2955, 3324, 3693, 4063, 4432, 4801, 5171, 5540,
- 5909, 6279, 6648, 7017, 7387, 7756, 8125, 8495,
- 8864, 9233, 9603, 9972, 10341, 10711, 11080, 11449,
- 11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404,
- 14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359,
- 17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313,
- 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268,
- 23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222,
- 26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177,
- 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
- 32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086,
- 35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041,
- 38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996,
- 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950,
- 44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905
-};
-
-static const int16_t kAvgDecayTime = 250; // frames; < 3000
-
-int32_t WebRtcAgc_CalculateGainTable(int32_t *gainTable, // Q16
- int16_t digCompGaindB, // Q0
- int16_t targetLevelDbfs,// Q0
+ 256, 485, 786, 1126, 1484, 1849, 2217, 2586, 2955, 3324, 3693,
+ 4063, 4432, 4801, 5171, 5540, 5909, 6279, 6648, 7017, 7387, 7756,
+ 8125, 8495, 8864, 9233, 9603, 9972, 10341, 10711, 11080, 11449, 11819,
+ 12188, 12557, 12927, 13296, 13665, 14035, 14404, 14773, 15143, 15512, 15881,
+ 16251, 16620, 16989, 17359, 17728, 18097, 18466, 18836, 19205, 19574, 19944,
+ 20313, 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268, 23637, 24006,
+ 24376, 24745, 25114, 25484, 25853, 26222, 26592, 26961, 27330, 27700, 28069,
+ 28438, 28808, 29177, 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
+ 32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086, 35456, 35825, 36194,
+ 36564, 36933, 37302, 37672, 38041, 38410, 38780, 39149, 39518, 39888, 40257,
+ 40626, 40996, 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950, 44320,
+ 44689, 45058, 45428, 45797, 46166, 46536, 46905};
+
+static const int16_t kAvgDecayTime = 250; // frames; < 3000
+
+int32_t WebRtcAgc_CalculateGainTable(int32_t* gainTable, // Q16
+ int16_t digCompGaindB, // Q0
+ int16_t targetLevelDbfs, // Q0
uint8_t limiterEnable,
- int16_t analogTarget) // Q0
+ int16_t analogTarget) // Q0
{
- // This function generates the compressor gain table used in the fixed digital part.
- uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
- int32_t inLevel, limiterLvl;
- int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
- const uint16_t kLog10 = 54426; // log2(10) in Q14
- const uint16_t kLog10_2 = 49321; // 10*log10(2) in Q14
- const uint16_t kLogE_1 = 23637; // log2(e) in Q14
- uint16_t constMaxGain;
- uint16_t tmpU16, intPart, fracPart;
- const int16_t kCompRatio = 3;
- const int16_t kSoftLimiterLeft = 1;
- int16_t limiterOffset = 0; // Limiter offset
- int16_t limiterIdx, limiterLvlX;
- int16_t constLinApprox, zeroGainLvl, maxGain, diffGain;
- int16_t i, tmp16, tmp16no1;
- int zeros, zerosScale;
-
- // Constants
-// kLogE_1 = 23637; // log2(e) in Q14
-// kLog10 = 54426; // log2(10) in Q14
-// kLog10_2 = 49321; // 10*log10(2) in Q14
-
- // Calculate maximum digital gain and zero gain level
- tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1);
- tmp16no1 = analogTarget - targetLevelDbfs;
- tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
- maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
- tmp32no1 = maxGain * kCompRatio;
- zeroGainLvl = digCompGaindB;
- zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
- kCompRatio - 1);
- if ((digCompGaindB <= analogTarget) && (limiterEnable))
- {
- zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
- limiterOffset = 0;
+ // This function generates the compressor gain table used in the fixed digital
+ // part.
+ uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
+ int32_t inLevel, limiterLvl;
+ int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
+ const uint16_t kLog10 = 54426; // log2(10) in Q14
+ const uint16_t kLog10_2 = 49321; // 10*log10(2) in Q14
+ const uint16_t kLogE_1 = 23637; // log2(e) in Q14
+ uint16_t constMaxGain;
+ uint16_t tmpU16, intPart, fracPart;
+ const int16_t kCompRatio = 3;
+ const int16_t kSoftLimiterLeft = 1;
+ int16_t limiterOffset = 0; // Limiter offset
+ int16_t limiterIdx, limiterLvlX;
+ int16_t constLinApprox, zeroGainLvl, maxGain, diffGain;
+ int16_t i, tmp16, tmp16no1;
+ int zeros, zerosScale;
+
+ // Constants
+ // kLogE_1 = 23637; // log2(e) in Q14
+ // kLog10 = 54426; // log2(10) in Q14
+ // kLog10_2 = 49321; // 10*log10(2) in Q14
+
+ // Calculate maximum digital gain and zero gain level
+ tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1);
+ tmp16no1 = analogTarget - targetLevelDbfs;
+ tmp16no1 +=
+ WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
+ maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
+ tmp32no1 = maxGain * kCompRatio;
+ zeroGainLvl = digCompGaindB;
+ zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
+ kCompRatio - 1);
+ if ((digCompGaindB <= analogTarget) && (limiterEnable)) {
+ zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
+ limiterOffset = 0;
+ }
+
+ // Calculate the difference between maximum gain and gain at 0dB0v:
+ // diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
+ // = (compRatio-1)*digCompGaindB/compRatio
+ tmp32no1 = digCompGaindB * (kCompRatio - 1);
+ diffGain =
+ WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
+ if (diffGain < 0 || diffGain >= kGenFuncTableSize) {
+ assert(0);
+ return -1;
+ }
+
+ // Calculate the limiter level and index:
+ // limiterLvlX = analogTarget - limiterOffset
+ // limiterLvl = targetLevelDbfs + limiterOffset/compRatio
+ limiterLvlX = analogTarget - limiterOffset;
+ limiterIdx = 2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX * (1 << 13),
+ kLog10_2 / 2);
+ tmp16no1 =
+ WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
+ limiterLvl = targetLevelDbfs + tmp16no1;
+
+ // Calculate (through table lookup):
+ // constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
+ constMaxGain = kGenFuncTable[diffGain]; // in Q8
+
+ // Calculate a parameter used to approximate the fractional part of 2^x with a
+ // piecewise linear function in Q14:
+ // constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
+ constLinApprox = 22817; // in Q14
+
+ // Calculate a denominator used in the exponential part to convert from dB to
+ // linear scale:
+ // den = 20*constMaxGain (in Q8)
+ den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
+
+ for (i = 0; i < 32; i++) {
+ // Calculate scaled input level (compressor):
+ // inLevel =
+ // fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
+ tmp16 = (int16_t)((kCompRatio - 1) * (i - 1)); // Q0
+ tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
+ inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
+
+ // Calculate diffGain-inLevel, to map using the genFuncTable
+ inLevel = (int32_t)diffGain * (1 << 14) - inLevel; // Q14
+
+ // Make calculations on abs(inLevel) and compensate for the sign afterwards.
+ absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel); // Q14
+
+ // LUT with interpolation
+ intPart = (uint16_t)(absInLevel >> 14);
+ fracPart =
+ (uint16_t)(absInLevel & 0x00003FFF); // extract the fractional part
+ tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
+ tmpU32no1 = tmpU16 * fracPart; // Q22
+ tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14; // Q22
+ logApprox = tmpU32no1 >> 8; // Q14
+ // Compensate for negative exponent using the relation:
+ // log2(1 + 2^-x) = log2(1 + 2^x) - x
+ if (inLevel < 0) {
+ zeros = WebRtcSpl_NormU32(absInLevel);
+ zerosScale = 0;
+ if (zeros < 15) {
+ // Not enough space for multiplication
+ tmpU32no2 = absInLevel >> (15 - zeros); // Q(zeros-1)
+ tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
+ if (zeros < 9) {
+ zerosScale = 9 - zeros;
+ tmpU32no1 >>= zerosScale; // Q(zeros+13)
+ } else {
+ tmpU32no2 >>= zeros - 9; // Q22
+ }
+ } else {
+ tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
+ tmpU32no2 >>= 6; // Q22
+ }
+ logApprox = 0;
+ if (tmpU32no2 < tmpU32no1) {
+ logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale); // Q14
+ }
}
+ numFIX = (maxGain * constMaxGain) * (1 << 6); // Q14
+ numFIX -= (int32_t)logApprox * diffGain; // Q14
- // Calculate the difference between maximum gain and gain at 0dB0v:
- // diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
- // = (compRatio-1)*digCompGaindB/compRatio
- tmp32no1 = digCompGaindB * (kCompRatio - 1);
- diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
- if (diffGain < 0 || diffGain >= kGenFuncTableSize)
+ // Calculate ratio
+ // Shift |numFIX| as much as possible.
+ // Ensure we avoid wrap-around in |den| as well.
+ if (numFIX > (den >> 8)) // |den| is Q8.
{
- assert(0);
- return -1;
+ zeros = WebRtcSpl_NormW32(numFIX);
+ } else {
+ zeros = WebRtcSpl_NormW32(den) + 8;
}
-
- // Calculate the limiter level and index:
- // limiterLvlX = analogTarget - limiterOffset
- // limiterLvl = targetLevelDbfs + limiterOffset/compRatio
- limiterLvlX = analogTarget - limiterOffset;
- limiterIdx =
- 2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX * (1 << 13),
- kLog10_2 / 2);
- tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
- limiterLvl = targetLevelDbfs + tmp16no1;
-
- // Calculate (through table lookup):
- // constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
- constMaxGain = kGenFuncTable[diffGain]; // in Q8
-
- // Calculate a parameter used to approximate the fractional part of 2^x with a
- // piecewise linear function in Q14:
- // constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
- constLinApprox = 22817; // in Q14
-
- // Calculate a denominator used in the exponential part to convert from dB to linear scale:
- // den = 20*constMaxGain (in Q8)
- den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
-
- for (i = 0; i < 32; i++)
- {
- // Calculate scaled input level (compressor):
- // inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
- tmp16 = (int16_t)((kCompRatio - 1) * (i - 1)); // Q0
- tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
- inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
-
- // Calculate diffGain-inLevel, to map using the genFuncTable
- inLevel = (int32_t)diffGain * (1 << 14) - inLevel; // Q14
-
- // Make calculations on abs(inLevel) and compensate for the sign afterwards.
- absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel); // Q14
-
- // LUT with interpolation
- intPart = (uint16_t)(absInLevel >> 14);
- fracPart = (uint16_t)(absInLevel & 0x00003FFF); // extract the fractional part
- tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
- tmpU32no1 = tmpU16 * fracPart; // Q22
- tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14; // Q22
- logApprox = tmpU32no1 >> 8; // Q14
- // Compensate for negative exponent using the relation:
- // log2(1 + 2^-x) = log2(1 + 2^x) - x
- if (inLevel < 0)
- {
- zeros = WebRtcSpl_NormU32(absInLevel);
- zerosScale = 0;
- if (zeros < 15)
- {
- // Not enough space for multiplication
- tmpU32no2 = absInLevel >> (15 - zeros); // Q(zeros-1)
- tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
- if (zeros < 9)
- {
- zerosScale = 9 - zeros;
- tmpU32no1 >>= zerosScale; // Q(zeros+13)
- } else
- {
- tmpU32no2 >>= zeros - 9; // Q22
- }
- } else
- {
- tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
- tmpU32no2 >>= 6; // Q22
- }
- logApprox = 0;
- if (tmpU32no2 < tmpU32no1)
- {
- logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale); //Q14
- }
- }
- numFIX = (maxGain * constMaxGain) * (1 << 6); // Q14
- numFIX -= (int32_t)logApprox * diffGain; // Q14
-
- // Calculate ratio
- // Shift |numFIX| as much as possible.
- // Ensure we avoid wrap-around in |den| as well.
- if (numFIX > (den >> 8)) // |den| is Q8.
- {
- zeros = WebRtcSpl_NormW32(numFIX);
- } else
- {
- zeros = WebRtcSpl_NormW32(den) + 8;
- }
- numFIX *= 1 << zeros; // Q(14+zeros)
-
- // Shift den so we end up in Qy1
- tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
- if (numFIX < 0)
- {
- numFIX -= tmp32no1 / 2;
- } else
- {
- numFIX += tmp32no1 / 2;
- }
- y32 = numFIX / tmp32no1; // in Q14
- if (limiterEnable && (i < limiterIdx))
- {
- tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
- tmp32 -= limiterLvl * (1 << 14); // Q14
- y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
- }
- if (y32 > 39000)
- {
- tmp32 = (y32 >> 1) * kLog10 + 4096; // in Q27
- tmp32 >>= 13; // In Q14.
- } else
- {
- tmp32 = y32 * kLog10 + 8192; // in Q28
- tmp32 >>= 14; // In Q14.
- }
- tmp32 += 16 << 14; // in Q14 (Make sure final output is in Q16)
-
- // Calculate power
- if (tmp32 > 0)
- {
- intPart = (int16_t)(tmp32 >> 14);
- fracPart = (uint16_t)(tmp32 & 0x00003FFF); // in Q14
- if ((fracPart >> 13) != 0)
- {
- tmp16 = (2 << 14) - constLinApprox;
- tmp32no2 = (1 << 14) - fracPart;
- tmp32no2 *= tmp16;
- tmp32no2 >>= 13;
- tmp32no2 = (1 << 14) - tmp32no2;
- } else
- {
- tmp16 = constLinApprox - (1 << 14);
- tmp32no2 = (fracPart * tmp16) >> 13;
- }
- fracPart = (uint16_t)tmp32no2;
- gainTable[i] =
- (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
- } else
- {
- gainTable[i] = 0;
- }
+ numFIX *= 1 << zeros; // Q(14+zeros)
+
+ // Shift den so we end up in Qy1
+ tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
+ if (numFIX < 0) {
+ numFIX -= tmp32no1 / 2;
+ } else {
+ numFIX += tmp32no1 / 2;
+ }
+ y32 = numFIX / tmp32no1; // in Q14
+ if (limiterEnable && (i < limiterIdx)) {
+ tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
+ tmp32 -= limiterLvl * (1 << 14); // Q14
+ y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
}
+ if (y32 > 39000) {
+ tmp32 = (y32 >> 1) * kLog10 + 4096; // in Q27
+ tmp32 >>= 13; // In Q14.
+ } else {
+ tmp32 = y32 * kLog10 + 8192; // in Q28
+ tmp32 >>= 14; // In Q14.
+ }
+ tmp32 += 16 << 14; // in Q14 (Make sure final output is in Q16)
+
+ // Calculate power
+ if (tmp32 > 0) {
+ intPart = (int16_t)(tmp32 >> 14);
+ fracPart = (uint16_t)(tmp32 & 0x00003FFF); // in Q14
+ if ((fracPart >> 13) != 0) {
+ tmp16 = (2 << 14) - constLinApprox;
+ tmp32no2 = (1 << 14) - fracPart;
+ tmp32no2 *= tmp16;
+ tmp32no2 >>= 13;
+ tmp32no2 = (1 << 14) - tmp32no2;
+ } else {
+ tmp16 = constLinApprox - (1 << 14);
+ tmp32no2 = (fracPart * tmp16) >> 13;
+ }
+ fracPart = (uint16_t)tmp32no2;
+ gainTable[i] =
+ (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
+ } else {
+ gainTable[i] = 0;
+ }
+ }
- return 0;
+ return 0;
}
int32_t WebRtcAgc_InitDigital(DigitalAgc* stt, int16_t agcMode) {
- if (agcMode == kAgcModeFixedDigital)
- {
- // start at minimum to find correct gain faster
- stt->capacitorSlow = 0;
- } else
- {
- // start out with 0 dB gain
- stt->capacitorSlow = 134217728; // (int32_t)(0.125f * 32768.0f * 32768.0f);
- }
- stt->capacitorFast = 0;
- stt->gain = 65536;
- stt->gatePrevious = 0;
- stt->agcMode = agcMode;
+ if (agcMode == kAgcModeFixedDigital) {
+ // start at minimum to find correct gain faster
+ stt->capacitorSlow = 0;
+ } else {
+ // start out with 0 dB gain
+ stt->capacitorSlow = 134217728; // (int32_t)(0.125f * 32768.0f * 32768.0f);
+ }
+ stt->capacitorFast = 0;
+ stt->gain = 65536;
+ stt->gatePrevious = 0;
+ stt->agcMode = agcMode;
#ifdef WEBRTC_AGC_DEBUG_DUMP
- stt->frameCounter = 0;
+ stt->frameCounter = 0;
#endif
- // initialize VADs
- WebRtcAgc_InitVad(&stt->vadNearend);
- WebRtcAgc_InitVad(&stt->vadFarend);
+ // initialize VADs
+ WebRtcAgc_InitVad(&stt->vadNearend);
+ WebRtcAgc_InitVad(&stt->vadFarend);
- return 0;
+ return 0;
}
int32_t WebRtcAgc_AddFarendToDigital(DigitalAgc* stt,
const int16_t* in_far,
size_t nrSamples) {
- assert(stt != NULL);
- // VAD for far end
- WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
+ assert(stt != NULL);
+ // VAD for far end
+ WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
- return 0;
+ return 0;
}
int32_t WebRtcAgc_ProcessDigital(DigitalAgc* stt,
@@ -298,476 +283,408 @@ int32_t WebRtcAgc_ProcessDigital(DigitalAgc* stt,
int16_t* const* out,
uint32_t FS,
int16_t lowlevelSignal) {
- // array for gains (one value per ms, incl start & end)
- int32_t gains[11];
-
- int32_t out_tmp, tmp32;
- int32_t env[10];
- int32_t max_nrg;
- int32_t cur_level;
- int32_t gain32, delta;
- int16_t logratio;
- int16_t lower_thr, upper_thr;
- int16_t zeros = 0, zeros_fast, frac = 0;
- int16_t decay;
- int16_t gate, gain_adj;
- int16_t k;
- size_t n, i, L;
- int16_t L2; // samples/subframe
-
- // determine number of samples per ms
- if (FS == 8000)
- {
- L = 8;
- L2 = 3;
- } else if (FS == 16000 || FS == 32000 || FS == 48000)
- {
- L = 16;
- L2 = 4;
- } else
- {
- return -1;
- }
-
- for (i = 0; i < num_bands; ++i)
- {
- if (in_near[i] != out[i])
- {
- // Only needed if they don't already point to the same place.
- memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0]));
- }
- }
- // VAD for near end
- logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out[0], L * 10);
-
- // Account for far end VAD
- if (stt->vadFarend.counter > 10)
- {
- tmp32 = 3 * logratio;
- logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2);
+ // array for gains (one value per ms, incl start & end)
+ int32_t gains[11];
+
+ int32_t out_tmp, tmp32;
+ int32_t env[10];
+ int32_t max_nrg;
+ int32_t cur_level;
+ int32_t gain32, delta;
+ int16_t logratio;
+ int16_t lower_thr, upper_thr;
+ int16_t zeros = 0, zeros_fast, frac = 0;
+ int16_t decay;
+ int16_t gate, gain_adj;
+ int16_t k;
+ size_t n, i, L;
+ int16_t L2; // samples/subframe
+
+ // determine number of samples per ms
+ if (FS == 8000) {
+ L = 8;
+ L2 = 3;
+ } else if (FS == 16000 || FS == 32000 || FS == 48000) {
+ L = 16;
+ L2 = 4;
+ } else {
+ return -1;
+ }
+
+ for (i = 0; i < num_bands; ++i) {
+ if (in_near[i] != out[i]) {
+ // Only needed if they don't already point to the same place.
+ memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0]));
}
-
- // Determine decay factor depending on VAD
- // upper_thr = 1.0f;
- // lower_thr = 0.25f;
- upper_thr = 1024; // Q10
- lower_thr = 0; // Q10
- if (logratio > upper_thr)
- {
- // decay = -2^17 / DecayTime; -> -65
- decay = -65;
- } else if (logratio < lower_thr)
- {
- decay = 0;
- } else
- {
- // decay = (int16_t)(((lower_thr - logratio)
- // * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
- // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr)) -> 65
- tmp32 = (lower_thr - logratio) * 65;
- decay = (int16_t)(tmp32 >> 10);
+ }
+ // VAD for near end
+ logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out[0], L * 10);
+
+ // Account for far end VAD
+ if (stt->vadFarend.counter > 10) {
+ tmp32 = 3 * logratio;
+ logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2);
+ }
+
+ // Determine decay factor depending on VAD
+ // upper_thr = 1.0f;
+ // lower_thr = 0.25f;
+ upper_thr = 1024; // Q10
+ lower_thr = 0; // Q10
+ if (logratio > upper_thr) {
+ // decay = -2^17 / DecayTime; -> -65
+ decay = -65;
+ } else if (logratio < lower_thr) {
+ decay = 0;
+ } else {
+ // decay = (int16_t)(((lower_thr - logratio)
+ // * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
+ // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr)) -> 65
+ tmp32 = (lower_thr - logratio) * 65;
+ decay = (int16_t)(tmp32 >> 10);
+ }
+
+ // adjust decay factor for long silence (detected as low standard deviation)
+ // This is only done in the adaptive modes
+ if (stt->agcMode != kAgcModeFixedDigital) {
+ if (stt->vadNearend.stdLongTerm < 4000) {
+ decay = 0;
+ } else if (stt->vadNearend.stdLongTerm < 8096) {
+ // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >>
+ // 12);
+ tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
+ decay = (int16_t)(tmp32 >> 12);
}
- // adjust decay factor for long silence (detected as low standard deviation)
- // This is only done in the adaptive modes
- if (stt->agcMode != kAgcModeFixedDigital)
- {
- if (stt->vadNearend.stdLongTerm < 4000)
- {
- decay = 0;
- } else if (stt->vadNearend.stdLongTerm < 8096)
- {
- // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12);
- tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
- decay = (int16_t)(tmp32 >> 12);
- }
-
- if (lowlevelSignal != 0)
- {
- decay = 0;
- }
+ if (lowlevelSignal != 0) {
+ decay = 0;
}
+ }
#ifdef WEBRTC_AGC_DEBUG_DUMP
- stt->frameCounter++;
- fprintf(stt->logFile,
- "%5.2f\t%d\t%d\t%d\t",
- (float)(stt->frameCounter) / 100,
- logratio,
- decay,
- stt->vadNearend.stdLongTerm);
+ stt->frameCounter++;
+ fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100,
+ logratio, decay, stt->vadNearend.stdLongTerm);
#endif
- // Find max amplitude per sub frame
- // iterate over sub frames
- for (k = 0; k < 10; k++)
- {
- // iterate over samples
- max_nrg = 0;
- for (n = 0; n < L; n++)
- {
- int32_t nrg = out[0][k * L + n] * out[0][k * L + n];
- if (nrg > max_nrg)
- {
- max_nrg = nrg;
- }
- }
- env[k] = max_nrg;
+ // Find max amplitude per sub frame
+ // iterate over sub frames
+ for (k = 0; k < 10; k++) {
+ // iterate over samples
+ max_nrg = 0;
+ for (n = 0; n < L; n++) {
+ int32_t nrg = out[0][k * L + n] * out[0][k * L + n];
+ if (nrg > max_nrg) {
+ max_nrg = nrg;
+ }
+ }
+ env[k] = max_nrg;
+ }
+
+ // Calculate gain per sub frame
+ gains[0] = stt->gain;
+ for (k = 0; k < 10; k++) {
+ // Fast envelope follower
+ // decay time = -131000 / -1000 = 131 (ms)
+ stt->capacitorFast =
+ AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
+ if (env[k] > stt->capacitorFast) {
+ stt->capacitorFast = env[k];
+ }
+ // Slow envelope follower
+ if (env[k] > stt->capacitorSlow) {
+ // increase capacitorSlow
+ stt->capacitorSlow = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow),
+ stt->capacitorSlow);
+ } else {
+ // decrease capacitorSlow
+ stt->capacitorSlow =
+ AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
}
- // Calculate gain per sub frame
- gains[0] = stt->gain;
- for (k = 0; k < 10; k++)
- {
- // Fast envelope follower
- // decay time = -131000 / -1000 = 131 (ms)
- stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
- if (env[k] > stt->capacitorFast)
- {
- stt->capacitorFast = env[k];
- }
- // Slow envelope follower
- if (env[k] > stt->capacitorSlow)
- {
- // increase capacitorSlow
- stt->capacitorSlow
- = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->capacitorSlow);
- } else
- {
- // decrease capacitorSlow
- stt->capacitorSlow
- = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
- }
-
- // use maximum of both capacitors as current level
- if (stt->capacitorFast > stt->capacitorSlow)
- {
- cur_level = stt->capacitorFast;
- } else
- {
- cur_level = stt->capacitorSlow;
- }
- // Translate signal level into gain, using a piecewise linear approximation
- // find number of leading zeros
- zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
- if (cur_level == 0)
- {
- zeros = 31;
- }
- tmp32 = (cur_level << zeros) & 0x7FFFFFFF;
- frac = (int16_t)(tmp32 >> 19); // Q12.
- tmp32 = (stt->gainTable[zeros-1] - stt->gainTable[zeros]) * frac;
- gains[k + 1] = stt->gainTable[zeros] + (tmp32 >> 12);
+ // use maximum of both capacitors as current level
+ if (stt->capacitorFast > stt->capacitorSlow) {
+ cur_level = stt->capacitorFast;
+ } else {
+ cur_level = stt->capacitorSlow;
+ }
+ // Translate signal level into gain, using a piecewise linear approximation
+ // find number of leading zeros
+ zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
+ if (cur_level == 0) {
+ zeros = 31;
+ }
+ tmp32 = (cur_level << zeros) & 0x7FFFFFFF;
+ frac = (int16_t)(tmp32 >> 19); // Q12.
+ tmp32 = (stt->gainTable[zeros - 1] - stt->gainTable[zeros]) * frac;
+ gains[k + 1] = stt->gainTable[zeros] + (tmp32 >> 12);
#ifdef WEBRTC_AGC_DEBUG_DUMP
- if (k == 0) {
- fprintf(stt->logFile,
- "%d\t%d\t%d\t%d\t%d\n",
- env[0],
- cur_level,
- stt->capacitorFast,
- stt->capacitorSlow,
- zeros);
- }
+ if (k == 0) {
+ fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level,
+ stt->capacitorFast, stt->capacitorSlow, zeros);
+ }
#endif
+ }
+
+ // Gate processing (lower gain during absence of speech)
+ zeros = (zeros << 9) - (frac >> 3);
+ // find number of leading zeros
+ zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
+ if (stt->capacitorFast == 0) {
+ zeros_fast = 31;
+ }
+ tmp32 = (stt->capacitorFast << zeros_fast) & 0x7FFFFFFF;
+ zeros_fast <<= 9;
+ zeros_fast -= (int16_t)(tmp32 >> 22);
+
+ gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
+
+ if (gate < 0) {
+ stt->gatePrevious = 0;
+ } else {
+ tmp32 = stt->gatePrevious * 7;
+ gate = (int16_t)((gate + tmp32) >> 3);
+ stt->gatePrevious = gate;
+ }
+ // gate < 0 -> no gate
+ // gate > 2500 -> max gate
+ if (gate > 0) {
+ if (gate < 2500) {
+ gain_adj = (2500 - gate) >> 5;
+ } else {
+ gain_adj = 0;
}
-
- // Gate processing (lower gain during absence of speech)
- zeros = (zeros << 9) - (frac >> 3);
- // find number of leading zeros
- zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
- if (stt->capacitorFast == 0)
- {
- zeros_fast = 31;
+ for (k = 0; k < 10; k++) {
+ if ((gains[k + 1] - stt->gainTable[0]) > 8388608) {
+ // To prevent wraparound
+ tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8;
+ tmp32 *= 178 + gain_adj;
+ } else {
+ tmp32 = (gains[k + 1] - stt->gainTable[0]) * (178 + gain_adj);
+ tmp32 >>= 8;
+ }
+ gains[k + 1] = stt->gainTable[0] + tmp32;
}
- tmp32 = (stt->capacitorFast << zeros_fast) & 0x7FFFFFFF;
- zeros_fast <<= 9;
- zeros_fast -= (int16_t)(tmp32 >> 22);
-
- gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
-
- if (gate < 0)
- {
- stt->gatePrevious = 0;
- } else
- {
- tmp32 = stt->gatePrevious * 7;
- gate = (int16_t)((gate + tmp32) >> 3);
- stt->gatePrevious = gate;
+ }
+
+ // Limit gain to avoid overload distortion
+ for (k = 0; k < 10; k++) {
+ // To prevent wrap around
+ zeros = 10;
+ if (gains[k + 1] > 47453132) {
+ zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
}
- // gate < 0 -> no gate
- // gate > 2500 -> max gate
- if (gate > 0)
- {
- if (gate < 2500)
- {
- gain_adj = (2500 - gate) >> 5;
- } else
- {
- gain_adj = 0;
- }
- for (k = 0; k < 10; k++)
- {
- if ((gains[k + 1] - stt->gainTable[0]) > 8388608)
- {
- // To prevent wraparound
- tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8;
- tmp32 *= 178 + gain_adj;
- } else
- {
- tmp32 = (gains[k+1] - stt->gainTable[0]) * (178 + gain_adj);
- tmp32 >>= 8;
- }
- gains[k + 1] = stt->gainTable[0] + tmp32;
- }
+ gain32 = (gains[k + 1] >> zeros) + 1;
+ gain32 *= gain32;
+ // check for overflow
+ while (AGC_MUL32((env[k] >> 12) + 1, gain32) >
+ WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10))) {
+ // multiply by 253/256 ==> -0.1 dB
+ if (gains[k + 1] > 8388607) {
+ // Prevent wrap around
+ gains[k + 1] = (gains[k + 1] / 256) * 253;
+ } else {
+ gains[k + 1] = (gains[k + 1] * 253) / 256;
+ }
+ gain32 = (gains[k + 1] >> zeros) + 1;
+ gain32 *= gain32;
}
-
- // Limit gain to avoid overload distortion
- for (k = 0; k < 10; k++)
- {
- // To prevent wrap around
- zeros = 10;
- if (gains[k + 1] > 47453132)
- {
- zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
- }
- gain32 = (gains[k + 1] >> zeros) + 1;
- gain32 *= gain32;
- // check for overflow
- while (AGC_MUL32((env[k] >> 12) + 1, gain32)
- > WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10)))
- {
- // multiply by 253/256 ==> -0.1 dB
- if (gains[k + 1] > 8388607)
- {
- // Prevent wrap around
- gains[k + 1] = (gains[k+1] / 256) * 253;
- } else
- {
- gains[k + 1] = (gains[k+1] * 253) / 256;
- }
- gain32 = (gains[k + 1] >> zeros) + 1;
- gain32 *= gain32;
- }
+ }
+ // gain reductions should be done 1 ms earlier than gain increases
+ for (k = 1; k < 10; k++) {
+ if (gains[k] > gains[k + 1]) {
+ gains[k] = gains[k + 1];
}
- // gain reductions should be done 1 ms earlier than gain increases
- for (k = 1; k < 10; k++)
- {
- if (gains[k] > gains[k + 1])
- {
- gains[k] = gains[k + 1];
- }
+ }
+ // save start gain for next frame
+ stt->gain = gains[10];
+
+ // Apply gain
+ // handle first sub frame separately
+ delta = (gains[1] - gains[0]) * (1 << (4 - L2));
+ gain32 = gains[0] * (1 << 4);
+ // iterate over samples
+ for (n = 0; n < L; n++) {
+ for (i = 0; i < num_bands; ++i) {
+ tmp32 = out[i][n] * ((gain32 + 127) >> 7);
+ out_tmp = tmp32 >> 16;
+ if (out_tmp > 4095) {
+ out[i][n] = (int16_t)32767;
+ } else if (out_tmp < -4096) {
+ out[i][n] = (int16_t)-32768;
+ } else {
+ tmp32 = out[i][n] * (gain32 >> 4);
+ out[i][n] = (int16_t)(tmp32 >> 16);
+ }
}
- // save start gain for next frame
- stt->gain = gains[10];
-
- // Apply gain
- // handle first sub frame separately
- delta = (gains[1] - gains[0]) * (1 << (4 - L2));
- gain32 = gains[0] * (1 << 4);
+ //
+
+ gain32 += delta;
+ }
+ // iterate over subframes
+ for (k = 1; k < 10; k++) {
+ delta = (gains[k + 1] - gains[k]) * (1 << (4 - L2));
+ gain32 = gains[k] * (1 << 4);
// iterate over samples
- for (n = 0; n < L; n++)
- {
- for (i = 0; i < num_bands; ++i)
- {
- tmp32 = out[i][n] * ((gain32 + 127) >> 7);
- out_tmp = tmp32 >> 16;
- if (out_tmp > 4095)
- {
- out[i][n] = (int16_t)32767;
- } else if (out_tmp < -4096)
- {
- out[i][n] = (int16_t)-32768;
- } else
- {
- tmp32 = out[i][n] * (gain32 >> 4);
- out[i][n] = (int16_t)(tmp32 >> 16);
- }
- }
- //
-
- gain32 += delta;
- }
- // iterate over subframes
- for (k = 1; k < 10; k++)
- {
- delta = (gains[k+1] - gains[k]) * (1 << (4 - L2));
- gain32 = gains[k] * (1 << 4);
- // iterate over samples
- for (n = 0; n < L; n++)
- {
- for (i = 0; i < num_bands; ++i)
- {
- tmp32 = out[i][k * L + n] * (gain32 >> 4);
- out[i][k * L + n] = (int16_t)(tmp32 >> 16);
- }
- gain32 += delta;
- }
+ for (n = 0; n < L; n++) {
+ for (i = 0; i < num_bands; ++i) {
+ tmp32 = out[i][k * L + n] * (gain32 >> 4);
+ out[i][k * L + n] = (int16_t)(tmp32 >> 16);
+ }
+ gain32 += delta;
}
+ }
- return 0;
+ return 0;
}
void WebRtcAgc_InitVad(AgcVad* state) {
- int16_t k;
-
- state->HPstate = 0; // state of high pass filter
- state->logRatio = 0; // log( P(active) / P(inactive) )
- // average input level (Q10)
- state->meanLongTerm = 15 << 10;
-
- // variance of input level (Q8)
- state->varianceLongTerm = 500 << 8;
-
- state->stdLongTerm = 0; // standard deviation of input level in dB
- // short-term average input level (Q10)
- state->meanShortTerm = 15 << 10;
-
- // short-term variance of input level (Q8)
- state->varianceShortTerm = 500 << 8;
-
- state->stdShortTerm = 0; // short-term standard deviation of input level in dB
- state->counter = 3; // counts updates
- for (k = 0; k < 8; k++)
- {
- // downsampling filter
- state->downState[k] = 0;
- }
+ int16_t k;
+
+ state->HPstate = 0; // state of high pass filter
+ state->logRatio = 0; // log( P(active) / P(inactive) )
+ // average input level (Q10)
+ state->meanLongTerm = 15 << 10;
+
+ // variance of input level (Q8)
+ state->varianceLongTerm = 500 << 8;
+
+ state->stdLongTerm = 0; // standard deviation of input level in dB
+ // short-term average input level (Q10)
+ state->meanShortTerm = 15 << 10;
+
+ // short-term variance of input level (Q8)
+ state->varianceShortTerm = 500 << 8;
+
+ state->stdShortTerm =
+ 0; // short-term standard deviation of input level in dB
+ state->counter = 3; // counts updates
+ for (k = 0; k < 8; k++) {
+ // downsampling filter
+ state->downState[k] = 0;
+ }
}
int16_t WebRtcAgc_ProcessVad(AgcVad* state, // (i) VAD state
const int16_t* in, // (i) Speech signal
- size_t nrSamples) // (i) number of samples
+ size_t nrSamples) // (i) number of samples
{
- int32_t out, nrg, tmp32, tmp32b;
- uint16_t tmpU16;
- int16_t k, subfr, tmp16;
- int16_t buf1[8];
- int16_t buf2[4];
- int16_t HPstate;
- int16_t zeros, dB;
-
- // process in 10 sub frames of 1 ms (to save on memory)
- nrg = 0;
- HPstate = state->HPstate;
- for (subfr = 0; subfr < 10; subfr++)
- {
- // downsample to 4 kHz
- if (nrSamples == 160)
- {
- for (k = 0; k < 8; k++)
- {
- tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
- tmp32 >>= 1;
- buf1[k] = (int16_t)tmp32;
- }
- in += 16;
-
- WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
- } else
- {
- WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
- in += 8;
- }
-
- // high pass filter and compute energy
- for (k = 0; k < 4; k++)
- {
- out = buf2[k] + HPstate;
- tmp32 = 600 * out;
- HPstate = (int16_t)((tmp32 >> 10) - buf2[k]);
- nrg += (out * out) >> 6;
- }
+ int32_t out, nrg, tmp32, tmp32b;
+ uint16_t tmpU16;
+ int16_t k, subfr, tmp16;
+ int16_t buf1[8];
+ int16_t buf2[4];
+ int16_t HPstate;
+ int16_t zeros, dB;
+
+ // process in 10 sub frames of 1 ms (to save on memory)
+ nrg = 0;
+ HPstate = state->HPstate;
+ for (subfr = 0; subfr < 10; subfr++) {
+ // downsample to 4 kHz
+ if (nrSamples == 160) {
+ for (k = 0; k < 8; k++) {
+ tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
+ tmp32 >>= 1;
+ buf1[k] = (int16_t)tmp32;
+ }
+ in += 16;
+
+ WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
+ } else {
+ WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
+ in += 8;
}
- state->HPstate = HPstate;
- // find number of leading zeros
- if (!(0xFFFF0000 & nrg))
- {
- zeros = 16;
- } else
- {
- zeros = 0;
- }
- if (!(0xFF000000 & (nrg << zeros)))
- {
- zeros += 8;
- }
- if (!(0xF0000000 & (nrg << zeros)))
- {
- zeros += 4;
- }
- if (!(0xC0000000 & (nrg << zeros)))
- {
- zeros += 2;
+ // high pass filter and compute energy
+ for (k = 0; k < 4; k++) {
+ out = buf2[k] + HPstate;
+ tmp32 = 600 * out;
+ HPstate = (int16_t)((tmp32 >> 10) - buf2[k]);
+ nrg += (out * out) >> 6;
}
- if (!(0x80000000 & (nrg << zeros)))
- {
- zeros += 1;
- }
-
- // energy level (range {-32..30}) (Q10)
- dB = (15 - zeros) << 11;
-
- // Update statistics
-
- if (state->counter < kAvgDecayTime)
- {
- // decay time = AvgDecTime * 10 ms
- state->counter++;
- }
-
- // update short-term estimate of mean energy level (Q10)
- tmp32 = state->meanShortTerm * 15 + dB;
- state->meanShortTerm = (int16_t)(tmp32 >> 4);
-
- // update short-term estimate of variance in energy level (Q8)
- tmp32 = (dB * dB) >> 12;
- tmp32 += state->varianceShortTerm * 15;
- state->varianceShortTerm = tmp32 / 16;
-
- // update short-term estimate of standard deviation in energy level (Q10)
- tmp32 = state->meanShortTerm * state->meanShortTerm;
- tmp32 = (state->varianceShortTerm << 12) - tmp32;
- state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
-
- // update long-term estimate of mean energy level (Q10)
- tmp32 = state->meanLongTerm * state->counter + dB;
- state->meanLongTerm = WebRtcSpl_DivW32W16ResW16(
- tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
-
- // update long-term estimate of variance in energy level (Q8)
- tmp32 = (dB * dB) >> 12;
- tmp32 += state->varianceLongTerm * state->counter;
- state->varianceLongTerm = WebRtcSpl_DivW32W16(
- tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
-
- // update long-term estimate of standard deviation in energy level (Q10)
- tmp32 = state->meanLongTerm * state->meanLongTerm;
- tmp32 = (state->varianceLongTerm << 12) - tmp32;
- state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
-
- // update voice activity measure (Q10)
- tmp16 = 3 << 12;
- // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in
- // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16()
- // was used, which did an intermediate cast to (int16_t), hence losing
- // significant bits. This cause logRatio to max out positive, rather than
- // negative. This is a bug, but has very little significance.
- tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm);
- tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
- tmpU16 = (13 << 12);
- tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
- tmp32 += tmp32b >> 10;
-
- state->logRatio = (int16_t)(tmp32 >> 6);
-
- // limit
- if (state->logRatio > 2048)
- {
- state->logRatio = 2048;
- }
- if (state->logRatio < -2048)
- {
- state->logRatio = -2048;
- }
-
- return state->logRatio; // Q10
+ }
+ state->HPstate = HPstate;
+
+ // find number of leading zeros
+ if (!(0xFFFF0000 & nrg)) {
+ zeros = 16;
+ } else {
+ zeros = 0;
+ }
+ if (!(0xFF000000 & (nrg << zeros))) {
+ zeros += 8;
+ }
+ if (!(0xF0000000 & (nrg << zeros))) {
+ zeros += 4;
+ }
+ if (!(0xC0000000 & (nrg << zeros))) {
+ zeros += 2;
+ }
+ if (!(0x80000000 & (nrg << zeros))) {
+ zeros += 1;
+ }
+
+ // energy level (range {-32..30}) (Q10)
+ dB = (15 - zeros) << 11;
+
+ // Update statistics
+
+ if (state->counter < kAvgDecayTime) {
+ // decay time = AvgDecTime * 10 ms
+ state->counter++;
+ }
+
+ // update short-term estimate of mean energy level (Q10)
+ tmp32 = state->meanShortTerm * 15 + dB;
+ state->meanShortTerm = (int16_t)(tmp32 >> 4);
+
+ // update short-term estimate of variance in energy level (Q8)
+ tmp32 = (dB * dB) >> 12;
+ tmp32 += state->varianceShortTerm * 15;
+ state->varianceShortTerm = tmp32 / 16;
+
+ // update short-term estimate of standard deviation in energy level (Q10)
+ tmp32 = state->meanShortTerm * state->meanShortTerm;
+ tmp32 = (state->varianceShortTerm << 12) - tmp32;
+ state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
+
+ // update long-term estimate of mean energy level (Q10)
+ tmp32 = state->meanLongTerm * state->counter + dB;
+ state->meanLongTerm =
+ WebRtcSpl_DivW32W16ResW16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
+
+ // update long-term estimate of variance in energy level (Q8)
+ tmp32 = (dB * dB) >> 12;
+ tmp32 += state->varianceLongTerm * state->counter;
+ state->varianceLongTerm =
+ WebRtcSpl_DivW32W16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
+
+ // update long-term estimate of standard deviation in energy level (Q10)
+ tmp32 = state->meanLongTerm * state->meanLongTerm;
+ tmp32 = (state->varianceLongTerm << 12) - tmp32;
+ state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
+
+ // update voice activity measure (Q10)
+ tmp16 = 3 << 12;
+ // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in
+ // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16()
+ // was used, which did an intermediate cast to (int16_t), hence losing
+ // significant bits. This cause logRatio to max out positive, rather than
+ // negative. This is a bug, but has very little significance.
+ tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm);
+ tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
+ tmpU16 = (13 << 12);
+ tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
+ tmp32 += tmp32b >> 10;
+
+ state->logRatio = (int16_t)(tmp32 >> 6);
+
+ // limit
+ if (state->logRatio > 2048) {
+ state->logRatio = 2048;
+ }
+ if (state->logRatio < -2048) {
+ state->logRatio = -2048;
+ }
+
+ return state->logRatio; // Q10
}
« no previous file with comments | « webrtc/modules/audio_processing/agc/legacy/digital_agc.h ('k') | webrtc/modules/audio_processing/agc/legacy/gain_control.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698