Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(175)

Side by Side Diff: webrtc/modules/audio_processing/agc/legacy/digital_agc.c

Issue 1998183002: Clang format on AGC legacy code. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 /* digital_agc.c 11 /* digital_agc.c
12 * 12 *
13 */ 13 */
14 14
15 #include "webrtc/modules/audio_processing/agc/legacy/digital_agc.h" 15 #include "webrtc/modules/audio_processing/agc/legacy/digital_agc.h"
16 16
17 #include <assert.h> 17 #include <assert.h>
18 #include <string.h> 18 #include <string.h>
19 #ifdef WEBRTC_AGC_DEBUG_DUMP 19 #ifdef WEBRTC_AGC_DEBUG_DUMP
20 #include <stdio.h> 20 #include <stdio.h>
21 #endif 21 #endif
22 22
23 #include "webrtc/modules/audio_processing/agc/legacy/gain_control.h" 23 #include "webrtc/modules/audio_processing/agc/legacy/gain_control.h"
24 24
25 // To generate the gaintable, copy&paste the following lines to a Matlab window: 25 // To generate the gaintable, copy&paste the following lines to a Matlab window:
26 // MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1; 26 // MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1;
27 // zeros = 0:31; lvl = 2.^(1-zeros); 27 // zeros = 0:31; lvl = 2.^(1-zeros);
28 // A = -10*log10(lvl) * (CompRatio - 1) / CompRatio; 28 // A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
29 // B = MaxGain - MinGain; 29 // B = MaxGain - MinGain;
30 // gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B) ) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B)))))); 30 // gains = round(2^16*10.^(0.05 * (MinGain + B * (
31 // log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) /
32 // log(1/(1+exp(Knee*B))))));
31 // fprintf(1, '\t%i, %i, %i, %i,\n', gains); 33 // fprintf(1, '\t%i, %i, %i, %i,\n', gains);
32 // % Matlab code for plotting the gain and input/output level characteristic (co py/paste the following 3 lines): 34 // % Matlab code for plotting the gain and input/output level characteristic
35 // (copy/paste the following 3 lines):
33 // in = 10*log10(lvl); out = 20*log10(gains/65536); 36 // in = 10*log10(lvl); out = 20*log10(gains/65536);
34 // subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input ( dB)'); ylabel('Gain (dB)'); 37 // subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input
35 // subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Inpu t (dB)'); ylabel('Output (dB)'); 38 // (dB)'); ylabel('Gain (dB)');
39 // subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on;
40 // xlabel('Input (dB)'); ylabel('Output (dB)');
36 // zoom on; 41 // zoom on;
37 42
38 // Generator table for y=log2(1+e^x) in Q8. 43 // Generator table for y=log2(1+e^x) in Q8.
39 enum { kGenFuncTableSize = 128 }; 44 enum { kGenFuncTableSize = 128 };
40 static const uint16_t kGenFuncTable[kGenFuncTableSize] = { 45 static const uint16_t kGenFuncTable[kGenFuncTableSize] = {
41 256, 485, 786, 1126, 1484, 1849, 2217, 2586, 46 256, 485, 786, 1126, 1484, 1849, 2217, 2586, 2955, 3324, 3693,
42 2955, 3324, 3693, 4063, 4432, 4801, 5171, 5540, 47 4063, 4432, 4801, 5171, 5540, 5909, 6279, 6648, 7017, 7387, 7756,
43 5909, 6279, 6648, 7017, 7387, 7756, 8125, 8495, 48 8125, 8495, 8864, 9233, 9603, 9972, 10341, 10711, 11080, 11449, 11819,
44 8864, 9233, 9603, 9972, 10341, 10711, 11080, 11449, 49 12188, 12557, 12927, 13296, 13665, 14035, 14404, 14773, 15143, 15512, 15881,
45 11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404, 50 16251, 16620, 16989, 17359, 17728, 18097, 18466, 18836, 19205, 19574, 19944,
46 14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359, 51 20313, 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268, 23637, 24006,
47 17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313, 52 24376, 24745, 25114, 25484, 25853, 26222, 26592, 26961, 27330, 27700, 28069,
48 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268, 53 28438, 28808, 29177, 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
49 23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222, 54 32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086, 35456, 35825, 36194,
50 26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177, 55 36564, 36933, 37302, 37672, 38041, 38410, 38780, 39149, 39518, 39888, 40257,
51 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132, 56 40626, 40996, 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950, 44320,
52 32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086, 57 44689, 45058, 45428, 45797, 46166, 46536, 46905};
53 35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041, 58
54 38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996, 59 static const int16_t kAvgDecayTime = 250; // frames; < 3000
55 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950, 60
56 44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905 61 int32_t WebRtcAgc_CalculateGainTable(int32_t* gainTable, // Q16
57 }; 62 int16_t digCompGaindB, // Q0
58 63 int16_t targetLevelDbfs, // Q0
59 static const int16_t kAvgDecayTime = 250; // frames; < 3000
60
61 int32_t WebRtcAgc_CalculateGainTable(int32_t *gainTable, // Q16
62 int16_t digCompGaindB, // Q0
63 int16_t targetLevelDbfs,// Q0
64 uint8_t limiterEnable, 64 uint8_t limiterEnable,
65 int16_t analogTarget) // Q0 65 int16_t analogTarget) // Q0
66 { 66 {
67 // This function generates the compressor gain table used in the fixed digit al part. 67 // This function generates the compressor gain table used in the fixed digital
68 uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox; 68 // part.
69 int32_t inLevel, limiterLvl; 69 uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
70 int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32; 70 int32_t inLevel, limiterLvl;
71 const uint16_t kLog10 = 54426; // log2(10) in Q14 71 int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
72 const uint16_t kLog10_2 = 49321; // 10*log10(2) in Q14 72 const uint16_t kLog10 = 54426; // log2(10) in Q14
73 const uint16_t kLogE_1 = 23637; // log2(e) in Q14 73 const uint16_t kLog10_2 = 49321; // 10*log10(2) in Q14
74 uint16_t constMaxGain; 74 const uint16_t kLogE_1 = 23637; // log2(e) in Q14
75 uint16_t tmpU16, intPart, fracPart; 75 uint16_t constMaxGain;
76 const int16_t kCompRatio = 3; 76 uint16_t tmpU16, intPart, fracPart;
77 const int16_t kSoftLimiterLeft = 1; 77 const int16_t kCompRatio = 3;
78 int16_t limiterOffset = 0; // Limiter offset 78 const int16_t kSoftLimiterLeft = 1;
79 int16_t limiterIdx, limiterLvlX; 79 int16_t limiterOffset = 0; // Limiter offset
80 int16_t constLinApprox, zeroGainLvl, maxGain, diffGain; 80 int16_t limiterIdx, limiterLvlX;
81 int16_t i, tmp16, tmp16no1; 81 int16_t constLinApprox, zeroGainLvl, maxGain, diffGain;
82 int zeros, zerosScale; 82 int16_t i, tmp16, tmp16no1;
83 83 int zeros, zerosScale;
84 // Constants 84
85 // kLogE_1 = 23637; // log2(e) in Q14 85 // Constants
86 // kLog10 = 54426; // log2(10) in Q14 86 // kLogE_1 = 23637; // log2(e) in Q14
87 // kLog10_2 = 49321; // 10*log10(2) in Q14 87 // kLog10 = 54426; // log2(10) in Q14
88 88 // kLog10_2 = 49321; // 10*log10(2) in Q14
89 // Calculate maximum digital gain and zero gain level 89
90 tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1); 90 // Calculate maximum digital gain and zero gain level
91 tmp16no1 = analogTarget - targetLevelDbfs; 91 tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1);
92 tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRat io); 92 tmp16no1 = analogTarget - targetLevelDbfs;
93 maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs)); 93 tmp16no1 +=
94 tmp32no1 = maxGain * kCompRatio; 94 WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
95 zeroGainLvl = digCompGaindB; 95 maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
96 zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1), 96 tmp32no1 = maxGain * kCompRatio;
97 kCompRatio - 1); 97 zeroGainLvl = digCompGaindB;
98 if ((digCompGaindB <= analogTarget) && (limiterEnable)) 98 zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
99 kCompRatio - 1);
100 if ((digCompGaindB <= analogTarget) && (limiterEnable)) {
101 zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
102 limiterOffset = 0;
103 }
104
105 // Calculate the difference between maximum gain and gain at 0dB0v:
106 // diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
107 // = (compRatio-1)*digCompGaindB/compRatio
108 tmp32no1 = digCompGaindB * (kCompRatio - 1);
109 diffGain =
110 WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
111 if (diffGain < 0 || diffGain >= kGenFuncTableSize) {
112 assert(0);
113 return -1;
114 }
115
116 // Calculate the limiter level and index:
117 // limiterLvlX = analogTarget - limiterOffset
118 // limiterLvl = targetLevelDbfs + limiterOffset/compRatio
119 limiterLvlX = analogTarget - limiterOffset;
120 limiterIdx = 2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX * (1 << 13),
121 kLog10_2 / 2);
122 tmp16no1 =
123 WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
124 limiterLvl = targetLevelDbfs + tmp16no1;
125
126 // Calculate (through table lookup):
127 // constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
128 constMaxGain = kGenFuncTable[diffGain]; // in Q8
129
130 // Calculate a parameter used to approximate the fractional part of 2^x with a
131 // piecewise linear function in Q14:
132 // constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
133 constLinApprox = 22817; // in Q14
134
135 // Calculate a denominator used in the exponential part to convert from dB to
136 // linear scale:
137 // den = 20*constMaxGain (in Q8)
138 den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
139
140 for (i = 0; i < 32; i++) {
141 // Calculate scaled input level (compressor):
142 // inLevel =
143 // fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
144 tmp16 = (int16_t)((kCompRatio - 1) * (i - 1)); // Q0
145 tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
146 inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
147
148 // Calculate diffGain-inLevel, to map using the genFuncTable
149 inLevel = (int32_t)diffGain * (1 << 14) - inLevel; // Q14
150
151 // Make calculations on abs(inLevel) and compensate for the sign afterwards.
152 absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel); // Q14
153
154 // LUT with interpolation
155 intPart = (uint16_t)(absInLevel >> 14);
156 fracPart =
157 (uint16_t)(absInLevel & 0x00003FFF); // extract the fractional part
158 tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
159 tmpU32no1 = tmpU16 * fracPart; // Q22
160 tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14; // Q22
161 logApprox = tmpU32no1 >> 8; // Q14
162 // Compensate for negative exponent using the relation:
163 // log2(1 + 2^-x) = log2(1 + 2^x) - x
164 if (inLevel < 0) {
165 zeros = WebRtcSpl_NormU32(absInLevel);
166 zerosScale = 0;
167 if (zeros < 15) {
168 // Not enough space for multiplication
169 tmpU32no2 = absInLevel >> (15 - zeros); // Q(zeros-1)
170 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
171 if (zeros < 9) {
172 zerosScale = 9 - zeros;
173 tmpU32no1 >>= zerosScale; // Q(zeros+13)
174 } else {
175 tmpU32no2 >>= zeros - 9; // Q22
176 }
177 } else {
178 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
179 tmpU32no2 >>= 6; // Q22
180 }
181 logApprox = 0;
182 if (tmpU32no2 < tmpU32no1) {
183 logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale); // Q14
184 }
185 }
186 numFIX = (maxGain * constMaxGain) * (1 << 6); // Q14
187 numFIX -= (int32_t)logApprox * diffGain; // Q14
188
189 // Calculate ratio
190 // Shift |numFIX| as much as possible.
191 // Ensure we avoid wrap-around in |den| as well.
192 if (numFIX > (den >> 8)) // |den| is Q8.
99 { 193 {
100 zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft); 194 zeros = WebRtcSpl_NormW32(numFIX);
101 limiterOffset = 0; 195 } else {
102 } 196 zeros = WebRtcSpl_NormW32(den) + 8;
103 197 }
104 // Calculate the difference between maximum gain and gain at 0dB0v: 198 numFIX *= 1 << zeros; // Q(14+zeros)
105 // diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio 199
106 // = (compRatio-1)*digCompGaindB/compRatio 200 // Shift den so we end up in Qy1
107 tmp32no1 = digCompGaindB * (kCompRatio - 1); 201 tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
108 diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRati o); 202 if (numFIX < 0) {
109 if (diffGain < 0 || diffGain >= kGenFuncTableSize) 203 numFIX -= tmp32no1 / 2;
110 { 204 } else {
111 assert(0); 205 numFIX += tmp32no1 / 2;
112 return -1; 206 }
113 } 207 y32 = numFIX / tmp32no1; // in Q14
114 208 if (limiterEnable && (i < limiterIdx)) {
115 // Calculate the limiter level and index: 209 tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
116 // limiterLvlX = analogTarget - limiterOffset 210 tmp32 -= limiterLvl * (1 << 14); // Q14
117 // limiterLvl = targetLevelDbfs + limiterOffset/compRatio 211 y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
118 limiterLvlX = analogTarget - limiterOffset; 212 }
119 limiterIdx = 213 if (y32 > 39000) {
120 2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX * (1 << 13), 214 tmp32 = (y32 >> 1) * kLog10 + 4096; // in Q27
121 kLog10_2 / 2); 215 tmp32 >>= 13; // In Q14.
122 tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCom pRatio); 216 } else {
123 limiterLvl = targetLevelDbfs + tmp16no1; 217 tmp32 = y32 * kLog10 + 8192; // in Q28
124 218 tmp32 >>= 14; // In Q14.
125 // Calculate (through table lookup): 219 }
126 // constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8) 220 tmp32 += 16 << 14; // in Q14 (Make sure final output is in Q16)
127 constMaxGain = kGenFuncTable[diffGain]; // in Q8 221
128 222 // Calculate power
129 // Calculate a parameter used to approximate the fractional part of 2^x with a 223 if (tmp32 > 0) {
130 // piecewise linear function in Q14: 224 intPart = (int16_t)(tmp32 >> 14);
131 // constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14); 225 fracPart = (uint16_t)(tmp32 & 0x00003FFF); // in Q14
132 constLinApprox = 22817; // in Q14 226 if ((fracPart >> 13) != 0) {
133 227 tmp16 = (2 << 14) - constLinApprox;
134 // Calculate a denominator used in the exponential part to convert from dB t o linear scale: 228 tmp32no2 = (1 << 14) - fracPart;
135 // den = 20*constMaxGain (in Q8) 229 tmp32no2 *= tmp16;
136 den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8 230 tmp32no2 >>= 13;
137 231 tmp32no2 = (1 << 14) - tmp32no2;
138 for (i = 0; i < 32; i++) 232 } else {
139 { 233 tmp16 = constLinApprox - (1 << 14);
140 // Calculate scaled input level (compressor): 234 tmp32no2 = (fracPart * tmp16) >> 13;
141 // inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/c ompRatio) 235 }
142 tmp16 = (int16_t)((kCompRatio - 1) * (i - 1)); // Q0 236 fracPart = (uint16_t)tmp32no2;
143 tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14 237 gainTable[i] =
144 inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14 238 (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
145 239 } else {
146 // Calculate diffGain-inLevel, to map using the genFuncTable 240 gainTable[i] = 0;
147 inLevel = (int32_t)diffGain * (1 << 14) - inLevel; // Q14 241 }
148 242 }
149 // Make calculations on abs(inLevel) and compensate for the sign afterwa rds. 243
150 absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel); // Q14 244 return 0;
151
152 // LUT with interpolation
153 intPart = (uint16_t)(absInLevel >> 14);
154 fracPart = (uint16_t)(absInLevel & 0x00003FFF); // extract the fractiona l part
155 tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
156 tmpU32no1 = tmpU16 * fracPart; // Q22
157 tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14; // Q22
158 logApprox = tmpU32no1 >> 8; // Q14
159 // Compensate for negative exponent using the relation:
160 // log2(1 + 2^-x) = log2(1 + 2^x) - x
161 if (inLevel < 0)
162 {
163 zeros = WebRtcSpl_NormU32(absInLevel);
164 zerosScale = 0;
165 if (zeros < 15)
166 {
167 // Not enough space for multiplication
168 tmpU32no2 = absInLevel >> (15 - zeros); // Q(zeros-1)
169 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zero s+13)
170 if (zeros < 9)
171 {
172 zerosScale = 9 - zeros;
173 tmpU32no1 >>= zerosScale; // Q(zeros+13)
174 } else
175 {
176 tmpU32no2 >>= zeros - 9; // Q22
177 }
178 } else
179 {
180 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
181 tmpU32no2 >>= 6; // Q22
182 }
183 logApprox = 0;
184 if (tmpU32no2 < tmpU32no1)
185 {
186 logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale); //Q14
187 }
188 }
189 numFIX = (maxGain * constMaxGain) * (1 << 6); // Q14
190 numFIX -= (int32_t)logApprox * diffGain; // Q14
191
192 // Calculate ratio
193 // Shift |numFIX| as much as possible.
194 // Ensure we avoid wrap-around in |den| as well.
195 if (numFIX > (den >> 8)) // |den| is Q8.
196 {
197 zeros = WebRtcSpl_NormW32(numFIX);
198 } else
199 {
200 zeros = WebRtcSpl_NormW32(den) + 8;
201 }
202 numFIX *= 1 << zeros; // Q(14+zeros)
203
204 // Shift den so we end up in Qy1
205 tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
206 if (numFIX < 0)
207 {
208 numFIX -= tmp32no1 / 2;
209 } else
210 {
211 numFIX += tmp32no1 / 2;
212 }
213 y32 = numFIX / tmp32no1; // in Q14
214 if (limiterEnable && (i < limiterIdx))
215 {
216 tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
217 tmp32 -= limiterLvl * (1 << 14); // Q14
218 y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
219 }
220 if (y32 > 39000)
221 {
222 tmp32 = (y32 >> 1) * kLog10 + 4096; // in Q27
223 tmp32 >>= 13; // In Q14.
224 } else
225 {
226 tmp32 = y32 * kLog10 + 8192; // in Q28
227 tmp32 >>= 14; // In Q14.
228 }
229 tmp32 += 16 << 14; // in Q14 (Make sure final output is in Q16)
230
231 // Calculate power
232 if (tmp32 > 0)
233 {
234 intPart = (int16_t)(tmp32 >> 14);
235 fracPart = (uint16_t)(tmp32 & 0x00003FFF); // in Q14
236 if ((fracPart >> 13) != 0)
237 {
238 tmp16 = (2 << 14) - constLinApprox;
239 tmp32no2 = (1 << 14) - fracPart;
240 tmp32no2 *= tmp16;
241 tmp32no2 >>= 13;
242 tmp32no2 = (1 << 14) - tmp32no2;
243 } else
244 {
245 tmp16 = constLinApprox - (1 << 14);
246 tmp32no2 = (fracPart * tmp16) >> 13;
247 }
248 fracPart = (uint16_t)tmp32no2;
249 gainTable[i] =
250 (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
251 } else
252 {
253 gainTable[i] = 0;
254 }
255 }
256
257 return 0;
258 } 245 }
259 246
260 int32_t WebRtcAgc_InitDigital(DigitalAgc* stt, int16_t agcMode) { 247 int32_t WebRtcAgc_InitDigital(DigitalAgc* stt, int16_t agcMode) {
261 if (agcMode == kAgcModeFixedDigital) 248 if (agcMode == kAgcModeFixedDigital) {
262 { 249 // start at minimum to find correct gain faster
263 // start at minimum to find correct gain faster 250 stt->capacitorSlow = 0;
264 stt->capacitorSlow = 0; 251 } else {
265 } else 252 // start out with 0 dB gain
266 { 253 stt->capacitorSlow = 134217728; // (int32_t)(0.125f * 32768.0f * 32768.0f);
267 // start out with 0 dB gain 254 }
268 stt->capacitorSlow = 134217728; // (int32_t)(0.125f * 32768.0f * 32768.0 f); 255 stt->capacitorFast = 0;
269 } 256 stt->gain = 65536;
270 stt->capacitorFast = 0; 257 stt->gatePrevious = 0;
271 stt->gain = 65536; 258 stt->agcMode = agcMode;
272 stt->gatePrevious = 0;
273 stt->agcMode = agcMode;
274 #ifdef WEBRTC_AGC_DEBUG_DUMP 259 #ifdef WEBRTC_AGC_DEBUG_DUMP
275 stt->frameCounter = 0; 260 stt->frameCounter = 0;
276 #endif 261 #endif
277 262
278 // initialize VADs 263 // initialize VADs
279 WebRtcAgc_InitVad(&stt->vadNearend); 264 WebRtcAgc_InitVad(&stt->vadNearend);
280 WebRtcAgc_InitVad(&stt->vadFarend); 265 WebRtcAgc_InitVad(&stt->vadFarend);
281 266
282 return 0; 267 return 0;
283 } 268 }
284 269
285 int32_t WebRtcAgc_AddFarendToDigital(DigitalAgc* stt, 270 int32_t WebRtcAgc_AddFarendToDigital(DigitalAgc* stt,
286 const int16_t* in_far, 271 const int16_t* in_far,
287 size_t nrSamples) { 272 size_t nrSamples) {
288 assert(stt != NULL); 273 assert(stt != NULL);
289 // VAD for far end 274 // VAD for far end
290 WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples); 275 WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
291 276
292 return 0; 277 return 0;
293 } 278 }
294 279
295 int32_t WebRtcAgc_ProcessDigital(DigitalAgc* stt, 280 int32_t WebRtcAgc_ProcessDigital(DigitalAgc* stt,
296 const int16_t* const* in_near, 281 const int16_t* const* in_near,
297 size_t num_bands, 282 size_t num_bands,
298 int16_t* const* out, 283 int16_t* const* out,
299 uint32_t FS, 284 uint32_t FS,
300 int16_t lowlevelSignal) { 285 int16_t lowlevelSignal) {
301 // array for gains (one value per ms, incl start & end) 286 // array for gains (one value per ms, incl start & end)
302 int32_t gains[11]; 287 int32_t gains[11];
303 288
304 int32_t out_tmp, tmp32; 289 int32_t out_tmp, tmp32;
305 int32_t env[10]; 290 int32_t env[10];
306 int32_t max_nrg; 291 int32_t max_nrg;
307 int32_t cur_level; 292 int32_t cur_level;
308 int32_t gain32, delta; 293 int32_t gain32, delta;
309 int16_t logratio; 294 int16_t logratio;
310 int16_t lower_thr, upper_thr; 295 int16_t lower_thr, upper_thr;
311 int16_t zeros = 0, zeros_fast, frac = 0; 296 int16_t zeros = 0, zeros_fast, frac = 0;
312 int16_t decay; 297 int16_t decay;
313 int16_t gate, gain_adj; 298 int16_t gate, gain_adj;
314 int16_t k; 299 int16_t k;
315 size_t n, i, L; 300 size_t n, i, L;
316 int16_t L2; // samples/subframe 301 int16_t L2; // samples/subframe
317 302
318 // determine number of samples per ms 303 // determine number of samples per ms
319 if (FS == 8000) 304 if (FS == 8000) {
320 { 305 L = 8;
321 L = 8; 306 L2 = 3;
322 L2 = 3; 307 } else if (FS == 16000 || FS == 32000 || FS == 48000) {
323 } else if (FS == 16000 || FS == 32000 || FS == 48000) 308 L = 16;
324 { 309 L2 = 4;
325 L = 16; 310 } else {
326 L2 = 4; 311 return -1;
327 } else 312 }
328 { 313
329 return -1; 314 for (i = 0; i < num_bands; ++i) {
330 } 315 if (in_near[i] != out[i]) {
331 316 // Only needed if they don't already point to the same place.
332 for (i = 0; i < num_bands; ++i) 317 memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0]));
333 { 318 }
334 if (in_near[i] != out[i]) 319 }
335 { 320 // VAD for near end
336 // Only needed if they don't already point to the same place. 321 logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out[0], L * 10);
337 memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0])); 322
338 } 323 // Account for far end VAD
339 } 324 if (stt->vadFarend.counter > 10) {
340 // VAD for near end 325 tmp32 = 3 * logratio;
341 logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out[0], L * 10); 326 logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2);
342 327 }
343 // Account for far end VAD 328
344 if (stt->vadFarend.counter > 10) 329 // Determine decay factor depending on VAD
345 { 330 // upper_thr = 1.0f;
346 tmp32 = 3 * logratio; 331 // lower_thr = 0.25f;
347 logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2); 332 upper_thr = 1024; // Q10
348 } 333 lower_thr = 0; // Q10
349 334 if (logratio > upper_thr) {
350 // Determine decay factor depending on VAD 335 // decay = -2^17 / DecayTime; -> -65
351 // upper_thr = 1.0f; 336 decay = -65;
352 // lower_thr = 0.25f; 337 } else if (logratio < lower_thr) {
353 upper_thr = 1024; // Q10 338 decay = 0;
354 lower_thr = 0; // Q10 339 } else {
355 if (logratio > upper_thr) 340 // decay = (int16_t)(((lower_thr - logratio)
356 { 341 // * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
357 // decay = -2^17 / DecayTime; -> -65 342 // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr)) -> 65
358 decay = -65; 343 tmp32 = (lower_thr - logratio) * 65;
359 } else if (logratio < lower_thr) 344 decay = (int16_t)(tmp32 >> 10);
360 { 345 }
361 decay = 0; 346
362 } else 347 // adjust decay factor for long silence (detected as low standard deviation)
363 { 348 // This is only done in the adaptive modes
364 // decay = (int16_t)(((lower_thr - logratio) 349 if (stt->agcMode != kAgcModeFixedDigital) {
365 // * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10); 350 if (stt->vadNearend.stdLongTerm < 4000) {
366 // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr)) -> 65 351 decay = 0;
367 tmp32 = (lower_thr - logratio) * 65; 352 } else if (stt->vadNearend.stdLongTerm < 8096) {
368 decay = (int16_t)(tmp32 >> 10); 353 // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >>
369 } 354 // 12);
370 355 tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
371 // adjust decay factor for long silence (detected as low standard deviation) 356 decay = (int16_t)(tmp32 >> 12);
372 // This is only done in the adaptive modes 357 }
373 if (stt->agcMode != kAgcModeFixedDigital) 358
374 { 359 if (lowlevelSignal != 0) {
375 if (stt->vadNearend.stdLongTerm < 4000) 360 decay = 0;
376 { 361 }
377 decay = 0; 362 }
378 } else if (stt->vadNearend.stdLongTerm < 8096)
379 {
380 // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12);
381 tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
382 decay = (int16_t)(tmp32 >> 12);
383 }
384
385 if (lowlevelSignal != 0)
386 {
387 decay = 0;
388 }
389 }
390 #ifdef WEBRTC_AGC_DEBUG_DUMP 363 #ifdef WEBRTC_AGC_DEBUG_DUMP
391 stt->frameCounter++; 364 stt->frameCounter++;
392 fprintf(stt->logFile, 365 fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100,
393 "%5.2f\t%d\t%d\t%d\t", 366 logratio, decay, stt->vadNearend.stdLongTerm);
394 (float)(stt->frameCounter) / 100,
395 logratio,
396 decay,
397 stt->vadNearend.stdLongTerm);
398 #endif 367 #endif
399 // Find max amplitude per sub frame 368 // Find max amplitude per sub frame
400 // iterate over sub frames 369 // iterate over sub frames
401 for (k = 0; k < 10; k++) 370 for (k = 0; k < 10; k++) {
402 { 371 // iterate over samples
403 // iterate over samples 372 max_nrg = 0;
404 max_nrg = 0; 373 for (n = 0; n < L; n++) {
405 for (n = 0; n < L; n++) 374 int32_t nrg = out[0][k * L + n] * out[0][k * L + n];
406 { 375 if (nrg > max_nrg) {
407 int32_t nrg = out[0][k * L + n] * out[0][k * L + n]; 376 max_nrg = nrg;
408 if (nrg > max_nrg) 377 }
409 { 378 }
410 max_nrg = nrg; 379 env[k] = max_nrg;
411 } 380 }
412 } 381
413 env[k] = max_nrg; 382 // Calculate gain per sub frame
414 } 383 gains[0] = stt->gain;
415 384 for (k = 0; k < 10; k++) {
416 // Calculate gain per sub frame 385 // Fast envelope follower
417 gains[0] = stt->gain; 386 // decay time = -131000 / -1000 = 131 (ms)
418 for (k = 0; k < 10; k++) 387 stt->capacitorFast =
419 { 388 AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
420 // Fast envelope follower 389 if (env[k] > stt->capacitorFast) {
421 // decay time = -131000 / -1000 = 131 (ms) 390 stt->capacitorFast = env[k];
422 stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->cap acitorFast); 391 }
423 if (env[k] > stt->capacitorFast) 392 // Slow envelope follower
424 { 393 if (env[k] > stt->capacitorSlow) {
425 stt->capacitorFast = env[k]; 394 // increase capacitorSlow
426 } 395 stt->capacitorSlow = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow),
427 // Slow envelope follower 396 stt->capacitorSlow);
428 if (env[k] > stt->capacitorSlow) 397 } else {
429 { 398 // decrease capacitorSlow
430 // increase capacitorSlow 399 stt->capacitorSlow =
431 stt->capacitorSlow 400 AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
432 = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->c apacitorSlow); 401 }
433 } else 402
434 { 403 // use maximum of both capacitors as current level
435 // decrease capacitorSlow 404 if (stt->capacitorFast > stt->capacitorSlow) {
436 stt->capacitorSlow 405 cur_level = stt->capacitorFast;
437 = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorS low); 406 } else {
438 } 407 cur_level = stt->capacitorSlow;
439 408 }
440 // use maximum of both capacitors as current level 409 // Translate signal level into gain, using a piecewise linear approximation
441 if (stt->capacitorFast > stt->capacitorSlow) 410 // find number of leading zeros
442 { 411 zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
443 cur_level = stt->capacitorFast; 412 if (cur_level == 0) {
444 } else 413 zeros = 31;
445 { 414 }
446 cur_level = stt->capacitorSlow; 415 tmp32 = (cur_level << zeros) & 0x7FFFFFFF;
447 } 416 frac = (int16_t)(tmp32 >> 19); // Q12.
448 // Translate signal level into gain, using a piecewise linear approximat ion 417 tmp32 = (stt->gainTable[zeros - 1] - stt->gainTable[zeros]) * frac;
449 // find number of leading zeros 418 gains[k + 1] = stt->gainTable[zeros] + (tmp32 >> 12);
450 zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
451 if (cur_level == 0)
452 {
453 zeros = 31;
454 }
455 tmp32 = (cur_level << zeros) & 0x7FFFFFFF;
456 frac = (int16_t)(tmp32 >> 19); // Q12.
457 tmp32 = (stt->gainTable[zeros-1] - stt->gainTable[zeros]) * frac;
458 gains[k + 1] = stt->gainTable[zeros] + (tmp32 >> 12);
459 #ifdef WEBRTC_AGC_DEBUG_DUMP 419 #ifdef WEBRTC_AGC_DEBUG_DUMP
460 if (k == 0) { 420 if (k == 0) {
461 fprintf(stt->logFile, 421 fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level,
462 "%d\t%d\t%d\t%d\t%d\n", 422 stt->capacitorFast, stt->capacitorSlow, zeros);
463 env[0], 423 }
464 cur_level,
465 stt->capacitorFast,
466 stt->capacitorSlow,
467 zeros);
468 }
469 #endif 424 #endif
470 } 425 }
471 426
472 // Gate processing (lower gain during absence of speech) 427 // Gate processing (lower gain during absence of speech)
473 zeros = (zeros << 9) - (frac >> 3); 428 zeros = (zeros << 9) - (frac >> 3);
474 // find number of leading zeros 429 // find number of leading zeros
475 zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast); 430 zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
476 if (stt->capacitorFast == 0) 431 if (stt->capacitorFast == 0) {
477 { 432 zeros_fast = 31;
478 zeros_fast = 31; 433 }
479 } 434 tmp32 = (stt->capacitorFast << zeros_fast) & 0x7FFFFFFF;
480 tmp32 = (stt->capacitorFast << zeros_fast) & 0x7FFFFFFF; 435 zeros_fast <<= 9;
481 zeros_fast <<= 9; 436 zeros_fast -= (int16_t)(tmp32 >> 22);
482 zeros_fast -= (int16_t)(tmp32 >> 22); 437
483 438 gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
484 gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm; 439
485 440 if (gate < 0) {
486 if (gate < 0) 441 stt->gatePrevious = 0;
487 { 442 } else {
488 stt->gatePrevious = 0; 443 tmp32 = stt->gatePrevious * 7;
489 } else 444 gate = (int16_t)((gate + tmp32) >> 3);
490 { 445 stt->gatePrevious = gate;
491 tmp32 = stt->gatePrevious * 7; 446 }
492 gate = (int16_t)((gate + tmp32) >> 3); 447 // gate < 0 -> no gate
493 stt->gatePrevious = gate; 448 // gate > 2500 -> max gate
494 } 449 if (gate > 0) {
495 // gate < 0 -> no gate 450 if (gate < 2500) {
496 // gate > 2500 -> max gate 451 gain_adj = (2500 - gate) >> 5;
497 if (gate > 0) 452 } else {
498 { 453 gain_adj = 0;
499 if (gate < 2500) 454 }
500 { 455 for (k = 0; k < 10; k++) {
501 gain_adj = (2500 - gate) >> 5; 456 if ((gains[k + 1] - stt->gainTable[0]) > 8388608) {
502 } else 457 // To prevent wraparound
503 { 458 tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8;
504 gain_adj = 0; 459 tmp32 *= 178 + gain_adj;
505 } 460 } else {
506 for (k = 0; k < 10; k++) 461 tmp32 = (gains[k + 1] - stt->gainTable[0]) * (178 + gain_adj);
507 { 462 tmp32 >>= 8;
508 if ((gains[k + 1] - stt->gainTable[0]) > 8388608) 463 }
509 { 464 gains[k + 1] = stt->gainTable[0] + tmp32;
510 // To prevent wraparound 465 }
511 tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8; 466 }
512 tmp32 *= 178 + gain_adj; 467
513 } else 468 // Limit gain to avoid overload distortion
514 { 469 for (k = 0; k < 10; k++) {
515 tmp32 = (gains[k+1] - stt->gainTable[0]) * (178 + gain_adj); 470 // To prevent wrap around
516 tmp32 >>= 8; 471 zeros = 10;
517 } 472 if (gains[k + 1] > 47453132) {
518 gains[k + 1] = stt->gainTable[0] + tmp32; 473 zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
519 } 474 }
520 } 475 gain32 = (gains[k + 1] >> zeros) + 1;
521 476 gain32 *= gain32;
522 // Limit gain to avoid overload distortion 477 // check for overflow
523 for (k = 0; k < 10; k++) 478 while (AGC_MUL32((env[k] >> 12) + 1, gain32) >
524 { 479 WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10))) {
525 // To prevent wrap around 480 // multiply by 253/256 ==> -0.1 dB
526 zeros = 10; 481 if (gains[k + 1] > 8388607) {
527 if (gains[k + 1] > 47453132) 482 // Prevent wrap around
528 { 483 gains[k + 1] = (gains[k + 1] / 256) * 253;
529 zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]); 484 } else {
530 } 485 gains[k + 1] = (gains[k + 1] * 253) / 256;
531 gain32 = (gains[k + 1] >> zeros) + 1; 486 }
532 gain32 *= gain32; 487 gain32 = (gains[k + 1] >> zeros) + 1;
533 // check for overflow 488 gain32 *= gain32;
534 while (AGC_MUL32((env[k] >> 12) + 1, gain32) 489 }
535 > WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10))) 490 }
536 { 491 // gain reductions should be done 1 ms earlier than gain increases
537 // multiply by 253/256 ==> -0.1 dB 492 for (k = 1; k < 10; k++) {
538 if (gains[k + 1] > 8388607) 493 if (gains[k] > gains[k + 1]) {
539 { 494 gains[k] = gains[k + 1];
540 // Prevent wrap around 495 }
541 gains[k + 1] = (gains[k+1] / 256) * 253; 496 }
542 } else 497 // save start gain for next frame
543 { 498 stt->gain = gains[10];
544 gains[k + 1] = (gains[k+1] * 253) / 256; 499
545 } 500 // Apply gain
546 gain32 = (gains[k + 1] >> zeros) + 1; 501 // handle first sub frame separately
547 gain32 *= gain32; 502 delta = (gains[1] - gains[0]) * (1 << (4 - L2));
548 } 503 gain32 = gains[0] * (1 << 4);
549 } 504 // iterate over samples
550 // gain reductions should be done 1 ms earlier than gain increases 505 for (n = 0; n < L; n++) {
551 for (k = 1; k < 10; k++) 506 for (i = 0; i < num_bands; ++i) {
552 { 507 tmp32 = out[i][n] * ((gain32 + 127) >> 7);
553 if (gains[k] > gains[k + 1]) 508 out_tmp = tmp32 >> 16;
554 { 509 if (out_tmp > 4095) {
555 gains[k] = gains[k + 1]; 510 out[i][n] = (int16_t)32767;
556 } 511 } else if (out_tmp < -4096) {
557 } 512 out[i][n] = (int16_t)-32768;
558 // save start gain for next frame 513 } else {
559 stt->gain = gains[10]; 514 tmp32 = out[i][n] * (gain32 >> 4);
560 515 out[i][n] = (int16_t)(tmp32 >> 16);
561 // Apply gain 516 }
562 // handle first sub frame separately 517 }
563 delta = (gains[1] - gains[0]) * (1 << (4 - L2)); 518 //
564 gain32 = gains[0] * (1 << 4); 519
520 gain32 += delta;
521 }
522 // iterate over subframes
523 for (k = 1; k < 10; k++) {
524 delta = (gains[k + 1] - gains[k]) * (1 << (4 - L2));
525 gain32 = gains[k] * (1 << 4);
565 // iterate over samples 526 // iterate over samples
566 for (n = 0; n < L; n++) 527 for (n = 0; n < L; n++) {
567 { 528 for (i = 0; i < num_bands; ++i) {
568 for (i = 0; i < num_bands; ++i) 529 tmp32 = out[i][k * L + n] * (gain32 >> 4);
569 { 530 out[i][k * L + n] = (int16_t)(tmp32 >> 16);
570 tmp32 = out[i][n] * ((gain32 + 127) >> 7); 531 }
571 out_tmp = tmp32 >> 16; 532 gain32 += delta;
572 if (out_tmp > 4095) 533 }
573 { 534 }
574 out[i][n] = (int16_t)32767; 535
575 } else if (out_tmp < -4096) 536 return 0;
576 {
577 out[i][n] = (int16_t)-32768;
578 } else
579 {
580 tmp32 = out[i][n] * (gain32 >> 4);
581 out[i][n] = (int16_t)(tmp32 >> 16);
582 }
583 }
584 //
585
586 gain32 += delta;
587 }
588 // iterate over subframes
589 for (k = 1; k < 10; k++)
590 {
591 delta = (gains[k+1] - gains[k]) * (1 << (4 - L2));
592 gain32 = gains[k] * (1 << 4);
593 // iterate over samples
594 for (n = 0; n < L; n++)
595 {
596 for (i = 0; i < num_bands; ++i)
597 {
598 tmp32 = out[i][k * L + n] * (gain32 >> 4);
599 out[i][k * L + n] = (int16_t)(tmp32 >> 16);
600 }
601 gain32 += delta;
602 }
603 }
604
605 return 0;
606 } 537 }
607 538
608 void WebRtcAgc_InitVad(AgcVad* state) { 539 void WebRtcAgc_InitVad(AgcVad* state) {
609 int16_t k; 540 int16_t k;
610 541
611 state->HPstate = 0; // state of high pass filter 542 state->HPstate = 0; // state of high pass filter
612 state->logRatio = 0; // log( P(active) / P(inactive) ) 543 state->logRatio = 0; // log( P(active) / P(inactive) )
613 // average input level (Q10) 544 // average input level (Q10)
614 state->meanLongTerm = 15 << 10; 545 state->meanLongTerm = 15 << 10;
615 546
616 // variance of input level (Q8) 547 // variance of input level (Q8)
617 state->varianceLongTerm = 500 << 8; 548 state->varianceLongTerm = 500 << 8;
618 549
619 state->stdLongTerm = 0; // standard deviation of input level in dB 550 state->stdLongTerm = 0; // standard deviation of input level in dB
620 // short-term average input level (Q10) 551 // short-term average input level (Q10)
621 state->meanShortTerm = 15 << 10; 552 state->meanShortTerm = 15 << 10;
622 553
623 // short-term variance of input level (Q8) 554 // short-term variance of input level (Q8)
624 state->varianceShortTerm = 500 << 8; 555 state->varianceShortTerm = 500 << 8;
625 556
626 state->stdShortTerm = 0; // short-term standard deviation of input level in dB 557 state->stdShortTerm =
627 state->counter = 3; // counts updates 558 0; // short-term standard deviation of input level in dB
628 for (k = 0; k < 8; k++) 559 state->counter = 3; // counts updates
629 { 560 for (k = 0; k < 8; k++) {
630 // downsampling filter 561 // downsampling filter
631 state->downState[k] = 0; 562 state->downState[k] = 0;
632 } 563 }
633 } 564 }
634 565
635 int16_t WebRtcAgc_ProcessVad(AgcVad* state, // (i) VAD state 566 int16_t WebRtcAgc_ProcessVad(AgcVad* state, // (i) VAD state
636 const int16_t* in, // (i) Speech signal 567 const int16_t* in, // (i) Speech signal
637 size_t nrSamples) // (i) number of samples 568 size_t nrSamples) // (i) number of samples
638 { 569 {
639 int32_t out, nrg, tmp32, tmp32b; 570 int32_t out, nrg, tmp32, tmp32b;
640 uint16_t tmpU16; 571 uint16_t tmpU16;
641 int16_t k, subfr, tmp16; 572 int16_t k, subfr, tmp16;
642 int16_t buf1[8]; 573 int16_t buf1[8];
643 int16_t buf2[4]; 574 int16_t buf2[4];
644 int16_t HPstate; 575 int16_t HPstate;
645 int16_t zeros, dB; 576 int16_t zeros, dB;
646 577
647 // process in 10 sub frames of 1 ms (to save on memory) 578 // process in 10 sub frames of 1 ms (to save on memory)
648 nrg = 0; 579 nrg = 0;
649 HPstate = state->HPstate; 580 HPstate = state->HPstate;
650 for (subfr = 0; subfr < 10; subfr++) 581 for (subfr = 0; subfr < 10; subfr++) {
651 { 582 // downsample to 4 kHz
652 // downsample to 4 kHz 583 if (nrSamples == 160) {
653 if (nrSamples == 160) 584 for (k = 0; k < 8; k++) {
654 { 585 tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
655 for (k = 0; k < 8; k++) 586 tmp32 >>= 1;
656 { 587 buf1[k] = (int16_t)tmp32;
657 tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1]; 588 }
658 tmp32 >>= 1; 589 in += 16;
659 buf1[k] = (int16_t)tmp32; 590
660 } 591 WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
661 in += 16; 592 } else {
662 593 WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
663 WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState); 594 in += 8;
664 } else 595 }
665 { 596
666 WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState); 597 // high pass filter and compute energy
667 in += 8; 598 for (k = 0; k < 4; k++) {
668 } 599 out = buf2[k] + HPstate;
669 600 tmp32 = 600 * out;
670 // high pass filter and compute energy 601 HPstate = (int16_t)((tmp32 >> 10) - buf2[k]);
671 for (k = 0; k < 4; k++) 602 nrg += (out * out) >> 6;
672 { 603 }
673 out = buf2[k] + HPstate; 604 }
674 tmp32 = 600 * out; 605 state->HPstate = HPstate;
675 HPstate = (int16_t)((tmp32 >> 10) - buf2[k]); 606
676 nrg += (out * out) >> 6; 607 // find number of leading zeros
677 } 608 if (!(0xFFFF0000 & nrg)) {
678 } 609 zeros = 16;
679 state->HPstate = HPstate; 610 } else {
680 611 zeros = 0;
681 // find number of leading zeros 612 }
682 if (!(0xFFFF0000 & nrg)) 613 if (!(0xFF000000 & (nrg << zeros))) {
683 { 614 zeros += 8;
684 zeros = 16; 615 }
685 } else 616 if (!(0xF0000000 & (nrg << zeros))) {
686 { 617 zeros += 4;
687 zeros = 0; 618 }
688 } 619 if (!(0xC0000000 & (nrg << zeros))) {
689 if (!(0xFF000000 & (nrg << zeros))) 620 zeros += 2;
690 { 621 }
691 zeros += 8; 622 if (!(0x80000000 & (nrg << zeros))) {
692 } 623 zeros += 1;
693 if (!(0xF0000000 & (nrg << zeros))) 624 }
694 { 625
695 zeros += 4; 626 // energy level (range {-32..30}) (Q10)
696 } 627 dB = (15 - zeros) << 11;
697 if (!(0xC0000000 & (nrg << zeros))) 628
698 { 629 // Update statistics
699 zeros += 2; 630
700 } 631 if (state->counter < kAvgDecayTime) {
701 if (!(0x80000000 & (nrg << zeros))) 632 // decay time = AvgDecTime * 10 ms
702 { 633 state->counter++;
703 zeros += 1; 634 }
704 } 635
705 636 // update short-term estimate of mean energy level (Q10)
706 // energy level (range {-32..30}) (Q10) 637 tmp32 = state->meanShortTerm * 15 + dB;
707 dB = (15 - zeros) << 11; 638 state->meanShortTerm = (int16_t)(tmp32 >> 4);
708 639
709 // Update statistics 640 // update short-term estimate of variance in energy level (Q8)
710 641 tmp32 = (dB * dB) >> 12;
711 if (state->counter < kAvgDecayTime) 642 tmp32 += state->varianceShortTerm * 15;
712 { 643 state->varianceShortTerm = tmp32 / 16;
713 // decay time = AvgDecTime * 10 ms 644
714 state->counter++; 645 // update short-term estimate of standard deviation in energy level (Q10)
715 } 646 tmp32 = state->meanShortTerm * state->meanShortTerm;
716 647 tmp32 = (state->varianceShortTerm << 12) - tmp32;
717 // update short-term estimate of mean energy level (Q10) 648 state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
718 tmp32 = state->meanShortTerm * 15 + dB; 649
719 state->meanShortTerm = (int16_t)(tmp32 >> 4); 650 // update long-term estimate of mean energy level (Q10)
720 651 tmp32 = state->meanLongTerm * state->counter + dB;
721 // update short-term estimate of variance in energy level (Q8) 652 state->meanLongTerm =
722 tmp32 = (dB * dB) >> 12; 653 WebRtcSpl_DivW32W16ResW16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
723 tmp32 += state->varianceShortTerm * 15; 654
724 state->varianceShortTerm = tmp32 / 16; 655 // update long-term estimate of variance in energy level (Q8)
725 656 tmp32 = (dB * dB) >> 12;
726 // update short-term estimate of standard deviation in energy level (Q10) 657 tmp32 += state->varianceLongTerm * state->counter;
727 tmp32 = state->meanShortTerm * state->meanShortTerm; 658 state->varianceLongTerm =
728 tmp32 = (state->varianceShortTerm << 12) - tmp32; 659 WebRtcSpl_DivW32W16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
729 state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32); 660
730 661 // update long-term estimate of standard deviation in energy level (Q10)
731 // update long-term estimate of mean energy level (Q10) 662 tmp32 = state->meanLongTerm * state->meanLongTerm;
732 tmp32 = state->meanLongTerm * state->counter + dB; 663 tmp32 = (state->varianceLongTerm << 12) - tmp32;
733 state->meanLongTerm = WebRtcSpl_DivW32W16ResW16( 664 state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
734 tmp32, WebRtcSpl_AddSatW16(state->counter, 1)); 665
735 666 // update voice activity measure (Q10)
736 // update long-term estimate of variance in energy level (Q8) 667 tmp16 = 3 << 12;
737 tmp32 = (dB * dB) >> 12; 668 // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in
738 tmp32 += state->varianceLongTerm * state->counter; 669 // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16()
739 state->varianceLongTerm = WebRtcSpl_DivW32W16( 670 // was used, which did an intermediate cast to (int16_t), hence losing
740 tmp32, WebRtcSpl_AddSatW16(state->counter, 1)); 671 // significant bits. This cause logRatio to max out positive, rather than
741 672 // negative. This is a bug, but has very little significance.
742 // update long-term estimate of standard deviation in energy level (Q10) 673 tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm);
743 tmp32 = state->meanLongTerm * state->meanLongTerm; 674 tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
744 tmp32 = (state->varianceLongTerm << 12) - tmp32; 675 tmpU16 = (13 << 12);
745 state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32); 676 tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
746 677 tmp32 += tmp32b >> 10;
747 // update voice activity measure (Q10) 678
748 tmp16 = 3 << 12; 679 state->logRatio = (int16_t)(tmp32 >> 6);
749 // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in 680
750 // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16() 681 // limit
751 // was used, which did an intermediate cast to (int16_t), hence losing 682 if (state->logRatio > 2048) {
752 // significant bits. This cause logRatio to max out positive, rather than 683 state->logRatio = 2048;
753 // negative. This is a bug, but has very little significance. 684 }
754 tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm); 685 if (state->logRatio < -2048) {
755 tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm); 686 state->logRatio = -2048;
756 tmpU16 = (13 << 12); 687 }
757 tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16); 688
758 tmp32 += tmp32b >> 10; 689 return state->logRatio; // Q10
759
760 state->logRatio = (int16_t)(tmp32 >> 6);
761
762 // limit
763 if (state->logRatio > 2048)
764 {
765 state->logRatio = 2048;
766 }
767 if (state->logRatio < -2048)
768 {
769 state->logRatio = -2048;
770 }
771
772 return state->logRatio; // Q10
773 } 690 }
OLDNEW
« no previous file with comments | « webrtc/modules/audio_processing/agc/legacy/digital_agc.h ('k') | webrtc/modules/audio_processing/agc/legacy/gain_control.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698