| Index: webrtc/modules/audio_processing/agc/legacy/digital_agc.c
|
| diff --git a/webrtc/modules/audio_processing/agc/legacy/digital_agc.c b/webrtc/modules/audio_processing/agc/legacy/digital_agc.c
|
| index 0881af11dbf4566820100f99c322081fe9d97da5..2ca967a4aae1a0d0a00758b4861a4838b1d11d46 100644
|
| --- a/webrtc/modules/audio_processing/agc/legacy/digital_agc.c
|
| +++ b/webrtc/modules/audio_processing/agc/legacy/digital_agc.c
|
| @@ -27,269 +27,254 @@
|
| // zeros = 0:31; lvl = 2.^(1-zeros);
|
| // A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
|
| // B = MaxGain - MinGain;
|
| -// gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B))))));
|
| +// gains = round(2^16*10.^(0.05 * (MinGain + B * (
|
| +// log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) /
|
| +// log(1/(1+exp(Knee*B))))));
|
| // fprintf(1, '\t%i, %i, %i, %i,\n', gains);
|
| -// % Matlab code for plotting the gain and input/output level characteristic (copy/paste the following 3 lines):
|
| +// % Matlab code for plotting the gain and input/output level characteristic
|
| +// (copy/paste the following 3 lines):
|
| // in = 10*log10(lvl); out = 20*log10(gains/65536);
|
| -// subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input (dB)'); ylabel('Gain (dB)');
|
| -// subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Input (dB)'); ylabel('Output (dB)');
|
| +// subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input
|
| +// (dB)'); ylabel('Gain (dB)');
|
| +// subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on;
|
| +// xlabel('Input (dB)'); ylabel('Output (dB)');
|
| // zoom on;
|
|
|
| // Generator table for y=log2(1+e^x) in Q8.
|
| enum { kGenFuncTableSize = 128 };
|
| static const uint16_t kGenFuncTable[kGenFuncTableSize] = {
|
| - 256, 485, 786, 1126, 1484, 1849, 2217, 2586,
|
| - 2955, 3324, 3693, 4063, 4432, 4801, 5171, 5540,
|
| - 5909, 6279, 6648, 7017, 7387, 7756, 8125, 8495,
|
| - 8864, 9233, 9603, 9972, 10341, 10711, 11080, 11449,
|
| - 11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404,
|
| - 14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359,
|
| - 17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313,
|
| - 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268,
|
| - 23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222,
|
| - 26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177,
|
| - 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
|
| - 32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086,
|
| - 35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041,
|
| - 38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996,
|
| - 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950,
|
| - 44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905
|
| -};
|
| -
|
| -static const int16_t kAvgDecayTime = 250; // frames; < 3000
|
| -
|
| -int32_t WebRtcAgc_CalculateGainTable(int32_t *gainTable, // Q16
|
| - int16_t digCompGaindB, // Q0
|
| - int16_t targetLevelDbfs,// Q0
|
| + 256, 485, 786, 1126, 1484, 1849, 2217, 2586, 2955, 3324, 3693,
|
| + 4063, 4432, 4801, 5171, 5540, 5909, 6279, 6648, 7017, 7387, 7756,
|
| + 8125, 8495, 8864, 9233, 9603, 9972, 10341, 10711, 11080, 11449, 11819,
|
| + 12188, 12557, 12927, 13296, 13665, 14035, 14404, 14773, 15143, 15512, 15881,
|
| + 16251, 16620, 16989, 17359, 17728, 18097, 18466, 18836, 19205, 19574, 19944,
|
| + 20313, 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268, 23637, 24006,
|
| + 24376, 24745, 25114, 25484, 25853, 26222, 26592, 26961, 27330, 27700, 28069,
|
| + 28438, 28808, 29177, 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
|
| + 32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086, 35456, 35825, 36194,
|
| + 36564, 36933, 37302, 37672, 38041, 38410, 38780, 39149, 39518, 39888, 40257,
|
| + 40626, 40996, 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950, 44320,
|
| + 44689, 45058, 45428, 45797, 46166, 46536, 46905};
|
| +
|
| +static const int16_t kAvgDecayTime = 250; // frames; < 3000
|
| +
|
| +int32_t WebRtcAgc_CalculateGainTable(int32_t* gainTable, // Q16
|
| + int16_t digCompGaindB, // Q0
|
| + int16_t targetLevelDbfs, // Q0
|
| uint8_t limiterEnable,
|
| - int16_t analogTarget) // Q0
|
| + int16_t analogTarget) // Q0
|
| {
|
| - // This function generates the compressor gain table used in the fixed digital part.
|
| - uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
|
| - int32_t inLevel, limiterLvl;
|
| - int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
|
| - const uint16_t kLog10 = 54426; // log2(10) in Q14
|
| - const uint16_t kLog10_2 = 49321; // 10*log10(2) in Q14
|
| - const uint16_t kLogE_1 = 23637; // log2(e) in Q14
|
| - uint16_t constMaxGain;
|
| - uint16_t tmpU16, intPart, fracPart;
|
| - const int16_t kCompRatio = 3;
|
| - const int16_t kSoftLimiterLeft = 1;
|
| - int16_t limiterOffset = 0; // Limiter offset
|
| - int16_t limiterIdx, limiterLvlX;
|
| - int16_t constLinApprox, zeroGainLvl, maxGain, diffGain;
|
| - int16_t i, tmp16, tmp16no1;
|
| - int zeros, zerosScale;
|
| -
|
| - // Constants
|
| -// kLogE_1 = 23637; // log2(e) in Q14
|
| -// kLog10 = 54426; // log2(10) in Q14
|
| -// kLog10_2 = 49321; // 10*log10(2) in Q14
|
| -
|
| - // Calculate maximum digital gain and zero gain level
|
| - tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1);
|
| - tmp16no1 = analogTarget - targetLevelDbfs;
|
| - tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
|
| - maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
|
| - tmp32no1 = maxGain * kCompRatio;
|
| - zeroGainLvl = digCompGaindB;
|
| - zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
|
| - kCompRatio - 1);
|
| - if ((digCompGaindB <= analogTarget) && (limiterEnable))
|
| - {
|
| - zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
|
| - limiterOffset = 0;
|
| + // This function generates the compressor gain table used in the fixed digital
|
| + // part.
|
| + uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
|
| + int32_t inLevel, limiterLvl;
|
| + int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
|
| + const uint16_t kLog10 = 54426; // log2(10) in Q14
|
| + const uint16_t kLog10_2 = 49321; // 10*log10(2) in Q14
|
| + const uint16_t kLogE_1 = 23637; // log2(e) in Q14
|
| + uint16_t constMaxGain;
|
| + uint16_t tmpU16, intPart, fracPart;
|
| + const int16_t kCompRatio = 3;
|
| + const int16_t kSoftLimiterLeft = 1;
|
| + int16_t limiterOffset = 0; // Limiter offset
|
| + int16_t limiterIdx, limiterLvlX;
|
| + int16_t constLinApprox, zeroGainLvl, maxGain, diffGain;
|
| + int16_t i, tmp16, tmp16no1;
|
| + int zeros, zerosScale;
|
| +
|
| + // Constants
|
| + // kLogE_1 = 23637; // log2(e) in Q14
|
| + // kLog10 = 54426; // log2(10) in Q14
|
| + // kLog10_2 = 49321; // 10*log10(2) in Q14
|
| +
|
| + // Calculate maximum digital gain and zero gain level
|
| + tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1);
|
| + tmp16no1 = analogTarget - targetLevelDbfs;
|
| + tmp16no1 +=
|
| + WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
|
| + maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
|
| + tmp32no1 = maxGain * kCompRatio;
|
| + zeroGainLvl = digCompGaindB;
|
| + zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
|
| + kCompRatio - 1);
|
| + if ((digCompGaindB <= analogTarget) && (limiterEnable)) {
|
| + zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
|
| + limiterOffset = 0;
|
| + }
|
| +
|
| + // Calculate the difference between maximum gain and gain at 0dB0v:
|
| + // diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
|
| + // = (compRatio-1)*digCompGaindB/compRatio
|
| + tmp32no1 = digCompGaindB * (kCompRatio - 1);
|
| + diffGain =
|
| + WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
|
| + if (diffGain < 0 || diffGain >= kGenFuncTableSize) {
|
| + assert(0);
|
| + return -1;
|
| + }
|
| +
|
| + // Calculate the limiter level and index:
|
| + // limiterLvlX = analogTarget - limiterOffset
|
| + // limiterLvl = targetLevelDbfs + limiterOffset/compRatio
|
| + limiterLvlX = analogTarget - limiterOffset;
|
| + limiterIdx = 2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX * (1 << 13),
|
| + kLog10_2 / 2);
|
| + tmp16no1 =
|
| + WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
|
| + limiterLvl = targetLevelDbfs + tmp16no1;
|
| +
|
| + // Calculate (through table lookup):
|
| + // constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
|
| + constMaxGain = kGenFuncTable[diffGain]; // in Q8
|
| +
|
| + // Calculate a parameter used to approximate the fractional part of 2^x with a
|
| + // piecewise linear function in Q14:
|
| + // constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
|
| + constLinApprox = 22817; // in Q14
|
| +
|
| + // Calculate a denominator used in the exponential part to convert from dB to
|
| + // linear scale:
|
| + // den = 20*constMaxGain (in Q8)
|
| + den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
|
| +
|
| + for (i = 0; i < 32; i++) {
|
| + // Calculate scaled input level (compressor):
|
| + // inLevel =
|
| + // fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
|
| + tmp16 = (int16_t)((kCompRatio - 1) * (i - 1)); // Q0
|
| + tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
|
| + inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
|
| +
|
| + // Calculate diffGain-inLevel, to map using the genFuncTable
|
| + inLevel = (int32_t)diffGain * (1 << 14) - inLevel; // Q14
|
| +
|
| + // Make calculations on abs(inLevel) and compensate for the sign afterwards.
|
| + absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel); // Q14
|
| +
|
| + // LUT with interpolation
|
| + intPart = (uint16_t)(absInLevel >> 14);
|
| + fracPart =
|
| + (uint16_t)(absInLevel & 0x00003FFF); // extract the fractional part
|
| + tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
|
| + tmpU32no1 = tmpU16 * fracPart; // Q22
|
| + tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14; // Q22
|
| + logApprox = tmpU32no1 >> 8; // Q14
|
| + // Compensate for negative exponent using the relation:
|
| + // log2(1 + 2^-x) = log2(1 + 2^x) - x
|
| + if (inLevel < 0) {
|
| + zeros = WebRtcSpl_NormU32(absInLevel);
|
| + zerosScale = 0;
|
| + if (zeros < 15) {
|
| + // Not enough space for multiplication
|
| + tmpU32no2 = absInLevel >> (15 - zeros); // Q(zeros-1)
|
| + tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
|
| + if (zeros < 9) {
|
| + zerosScale = 9 - zeros;
|
| + tmpU32no1 >>= zerosScale; // Q(zeros+13)
|
| + } else {
|
| + tmpU32no2 >>= zeros - 9; // Q22
|
| + }
|
| + } else {
|
| + tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
|
| + tmpU32no2 >>= 6; // Q22
|
| + }
|
| + logApprox = 0;
|
| + if (tmpU32no2 < tmpU32no1) {
|
| + logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale); // Q14
|
| + }
|
| }
|
| + numFIX = (maxGain * constMaxGain) * (1 << 6); // Q14
|
| + numFIX -= (int32_t)logApprox * diffGain; // Q14
|
|
|
| - // Calculate the difference between maximum gain and gain at 0dB0v:
|
| - // diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
|
| - // = (compRatio-1)*digCompGaindB/compRatio
|
| - tmp32no1 = digCompGaindB * (kCompRatio - 1);
|
| - diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
|
| - if (diffGain < 0 || diffGain >= kGenFuncTableSize)
|
| + // Calculate ratio
|
| + // Shift |numFIX| as much as possible.
|
| + // Ensure we avoid wrap-around in |den| as well.
|
| + if (numFIX > (den >> 8)) // |den| is Q8.
|
| {
|
| - assert(0);
|
| - return -1;
|
| + zeros = WebRtcSpl_NormW32(numFIX);
|
| + } else {
|
| + zeros = WebRtcSpl_NormW32(den) + 8;
|
| }
|
| -
|
| - // Calculate the limiter level and index:
|
| - // limiterLvlX = analogTarget - limiterOffset
|
| - // limiterLvl = targetLevelDbfs + limiterOffset/compRatio
|
| - limiterLvlX = analogTarget - limiterOffset;
|
| - limiterIdx =
|
| - 2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX * (1 << 13),
|
| - kLog10_2 / 2);
|
| - tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
|
| - limiterLvl = targetLevelDbfs + tmp16no1;
|
| -
|
| - // Calculate (through table lookup):
|
| - // constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
|
| - constMaxGain = kGenFuncTable[diffGain]; // in Q8
|
| -
|
| - // Calculate a parameter used to approximate the fractional part of 2^x with a
|
| - // piecewise linear function in Q14:
|
| - // constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
|
| - constLinApprox = 22817; // in Q14
|
| -
|
| - // Calculate a denominator used in the exponential part to convert from dB to linear scale:
|
| - // den = 20*constMaxGain (in Q8)
|
| - den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
|
| -
|
| - for (i = 0; i < 32; i++)
|
| - {
|
| - // Calculate scaled input level (compressor):
|
| - // inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
|
| - tmp16 = (int16_t)((kCompRatio - 1) * (i - 1)); // Q0
|
| - tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
|
| - inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
|
| -
|
| - // Calculate diffGain-inLevel, to map using the genFuncTable
|
| - inLevel = (int32_t)diffGain * (1 << 14) - inLevel; // Q14
|
| -
|
| - // Make calculations on abs(inLevel) and compensate for the sign afterwards.
|
| - absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel); // Q14
|
| -
|
| - // LUT with interpolation
|
| - intPart = (uint16_t)(absInLevel >> 14);
|
| - fracPart = (uint16_t)(absInLevel & 0x00003FFF); // extract the fractional part
|
| - tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
|
| - tmpU32no1 = tmpU16 * fracPart; // Q22
|
| - tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14; // Q22
|
| - logApprox = tmpU32no1 >> 8; // Q14
|
| - // Compensate for negative exponent using the relation:
|
| - // log2(1 + 2^-x) = log2(1 + 2^x) - x
|
| - if (inLevel < 0)
|
| - {
|
| - zeros = WebRtcSpl_NormU32(absInLevel);
|
| - zerosScale = 0;
|
| - if (zeros < 15)
|
| - {
|
| - // Not enough space for multiplication
|
| - tmpU32no2 = absInLevel >> (15 - zeros); // Q(zeros-1)
|
| - tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
|
| - if (zeros < 9)
|
| - {
|
| - zerosScale = 9 - zeros;
|
| - tmpU32no1 >>= zerosScale; // Q(zeros+13)
|
| - } else
|
| - {
|
| - tmpU32no2 >>= zeros - 9; // Q22
|
| - }
|
| - } else
|
| - {
|
| - tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
|
| - tmpU32no2 >>= 6; // Q22
|
| - }
|
| - logApprox = 0;
|
| - if (tmpU32no2 < tmpU32no1)
|
| - {
|
| - logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale); //Q14
|
| - }
|
| - }
|
| - numFIX = (maxGain * constMaxGain) * (1 << 6); // Q14
|
| - numFIX -= (int32_t)logApprox * diffGain; // Q14
|
| -
|
| - // Calculate ratio
|
| - // Shift |numFIX| as much as possible.
|
| - // Ensure we avoid wrap-around in |den| as well.
|
| - if (numFIX > (den >> 8)) // |den| is Q8.
|
| - {
|
| - zeros = WebRtcSpl_NormW32(numFIX);
|
| - } else
|
| - {
|
| - zeros = WebRtcSpl_NormW32(den) + 8;
|
| - }
|
| - numFIX *= 1 << zeros; // Q(14+zeros)
|
| -
|
| - // Shift den so we end up in Qy1
|
| - tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
|
| - if (numFIX < 0)
|
| - {
|
| - numFIX -= tmp32no1 / 2;
|
| - } else
|
| - {
|
| - numFIX += tmp32no1 / 2;
|
| - }
|
| - y32 = numFIX / tmp32no1; // in Q14
|
| - if (limiterEnable && (i < limiterIdx))
|
| - {
|
| - tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
|
| - tmp32 -= limiterLvl * (1 << 14); // Q14
|
| - y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
|
| - }
|
| - if (y32 > 39000)
|
| - {
|
| - tmp32 = (y32 >> 1) * kLog10 + 4096; // in Q27
|
| - tmp32 >>= 13; // In Q14.
|
| - } else
|
| - {
|
| - tmp32 = y32 * kLog10 + 8192; // in Q28
|
| - tmp32 >>= 14; // In Q14.
|
| - }
|
| - tmp32 += 16 << 14; // in Q14 (Make sure final output is in Q16)
|
| -
|
| - // Calculate power
|
| - if (tmp32 > 0)
|
| - {
|
| - intPart = (int16_t)(tmp32 >> 14);
|
| - fracPart = (uint16_t)(tmp32 & 0x00003FFF); // in Q14
|
| - if ((fracPart >> 13) != 0)
|
| - {
|
| - tmp16 = (2 << 14) - constLinApprox;
|
| - tmp32no2 = (1 << 14) - fracPart;
|
| - tmp32no2 *= tmp16;
|
| - tmp32no2 >>= 13;
|
| - tmp32no2 = (1 << 14) - tmp32no2;
|
| - } else
|
| - {
|
| - tmp16 = constLinApprox - (1 << 14);
|
| - tmp32no2 = (fracPart * tmp16) >> 13;
|
| - }
|
| - fracPart = (uint16_t)tmp32no2;
|
| - gainTable[i] =
|
| - (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
|
| - } else
|
| - {
|
| - gainTable[i] = 0;
|
| - }
|
| + numFIX *= 1 << zeros; // Q(14+zeros)
|
| +
|
| + // Shift den so we end up in Qy1
|
| + tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
|
| + if (numFIX < 0) {
|
| + numFIX -= tmp32no1 / 2;
|
| + } else {
|
| + numFIX += tmp32no1 / 2;
|
| + }
|
| + y32 = numFIX / tmp32no1; // in Q14
|
| + if (limiterEnable && (i < limiterIdx)) {
|
| + tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
|
| + tmp32 -= limiterLvl * (1 << 14); // Q14
|
| + y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
|
| }
|
| + if (y32 > 39000) {
|
| + tmp32 = (y32 >> 1) * kLog10 + 4096; // in Q27
|
| + tmp32 >>= 13; // In Q14.
|
| + } else {
|
| + tmp32 = y32 * kLog10 + 8192; // in Q28
|
| + tmp32 >>= 14; // In Q14.
|
| + }
|
| + tmp32 += 16 << 14; // in Q14 (Make sure final output is in Q16)
|
| +
|
| + // Calculate power
|
| + if (tmp32 > 0) {
|
| + intPart = (int16_t)(tmp32 >> 14);
|
| + fracPart = (uint16_t)(tmp32 & 0x00003FFF); // in Q14
|
| + if ((fracPart >> 13) != 0) {
|
| + tmp16 = (2 << 14) - constLinApprox;
|
| + tmp32no2 = (1 << 14) - fracPart;
|
| + tmp32no2 *= tmp16;
|
| + tmp32no2 >>= 13;
|
| + tmp32no2 = (1 << 14) - tmp32no2;
|
| + } else {
|
| + tmp16 = constLinApprox - (1 << 14);
|
| + tmp32no2 = (fracPart * tmp16) >> 13;
|
| + }
|
| + fracPart = (uint16_t)tmp32no2;
|
| + gainTable[i] =
|
| + (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
|
| + } else {
|
| + gainTable[i] = 0;
|
| + }
|
| + }
|
|
|
| - return 0;
|
| + return 0;
|
| }
|
|
|
| int32_t WebRtcAgc_InitDigital(DigitalAgc* stt, int16_t agcMode) {
|
| - if (agcMode == kAgcModeFixedDigital)
|
| - {
|
| - // start at minimum to find correct gain faster
|
| - stt->capacitorSlow = 0;
|
| - } else
|
| - {
|
| - // start out with 0 dB gain
|
| - stt->capacitorSlow = 134217728; // (int32_t)(0.125f * 32768.0f * 32768.0f);
|
| - }
|
| - stt->capacitorFast = 0;
|
| - stt->gain = 65536;
|
| - stt->gatePrevious = 0;
|
| - stt->agcMode = agcMode;
|
| + if (agcMode == kAgcModeFixedDigital) {
|
| + // start at minimum to find correct gain faster
|
| + stt->capacitorSlow = 0;
|
| + } else {
|
| + // start out with 0 dB gain
|
| + stt->capacitorSlow = 134217728; // (int32_t)(0.125f * 32768.0f * 32768.0f);
|
| + }
|
| + stt->capacitorFast = 0;
|
| + stt->gain = 65536;
|
| + stt->gatePrevious = 0;
|
| + stt->agcMode = agcMode;
|
| #ifdef WEBRTC_AGC_DEBUG_DUMP
|
| - stt->frameCounter = 0;
|
| + stt->frameCounter = 0;
|
| #endif
|
|
|
| - // initialize VADs
|
| - WebRtcAgc_InitVad(&stt->vadNearend);
|
| - WebRtcAgc_InitVad(&stt->vadFarend);
|
| + // initialize VADs
|
| + WebRtcAgc_InitVad(&stt->vadNearend);
|
| + WebRtcAgc_InitVad(&stt->vadFarend);
|
|
|
| - return 0;
|
| + return 0;
|
| }
|
|
|
| int32_t WebRtcAgc_AddFarendToDigital(DigitalAgc* stt,
|
| const int16_t* in_far,
|
| size_t nrSamples) {
|
| - assert(stt != NULL);
|
| - // VAD for far end
|
| - WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
|
| + assert(stt != NULL);
|
| + // VAD for far end
|
| + WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
|
|
|
| - return 0;
|
| + return 0;
|
| }
|
|
|
| int32_t WebRtcAgc_ProcessDigital(DigitalAgc* stt,
|
| @@ -298,476 +283,408 @@ int32_t WebRtcAgc_ProcessDigital(DigitalAgc* stt,
|
| int16_t* const* out,
|
| uint32_t FS,
|
| int16_t lowlevelSignal) {
|
| - // array for gains (one value per ms, incl start & end)
|
| - int32_t gains[11];
|
| -
|
| - int32_t out_tmp, tmp32;
|
| - int32_t env[10];
|
| - int32_t max_nrg;
|
| - int32_t cur_level;
|
| - int32_t gain32, delta;
|
| - int16_t logratio;
|
| - int16_t lower_thr, upper_thr;
|
| - int16_t zeros = 0, zeros_fast, frac = 0;
|
| - int16_t decay;
|
| - int16_t gate, gain_adj;
|
| - int16_t k;
|
| - size_t n, i, L;
|
| - int16_t L2; // samples/subframe
|
| -
|
| - // determine number of samples per ms
|
| - if (FS == 8000)
|
| - {
|
| - L = 8;
|
| - L2 = 3;
|
| - } else if (FS == 16000 || FS == 32000 || FS == 48000)
|
| - {
|
| - L = 16;
|
| - L2 = 4;
|
| - } else
|
| - {
|
| - return -1;
|
| - }
|
| -
|
| - for (i = 0; i < num_bands; ++i)
|
| - {
|
| - if (in_near[i] != out[i])
|
| - {
|
| - // Only needed if they don't already point to the same place.
|
| - memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0]));
|
| - }
|
| - }
|
| - // VAD for near end
|
| - logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out[0], L * 10);
|
| -
|
| - // Account for far end VAD
|
| - if (stt->vadFarend.counter > 10)
|
| - {
|
| - tmp32 = 3 * logratio;
|
| - logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2);
|
| + // array for gains (one value per ms, incl start & end)
|
| + int32_t gains[11];
|
| +
|
| + int32_t out_tmp, tmp32;
|
| + int32_t env[10];
|
| + int32_t max_nrg;
|
| + int32_t cur_level;
|
| + int32_t gain32, delta;
|
| + int16_t logratio;
|
| + int16_t lower_thr, upper_thr;
|
| + int16_t zeros = 0, zeros_fast, frac = 0;
|
| + int16_t decay;
|
| + int16_t gate, gain_adj;
|
| + int16_t k;
|
| + size_t n, i, L;
|
| + int16_t L2; // samples/subframe
|
| +
|
| + // determine number of samples per ms
|
| + if (FS == 8000) {
|
| + L = 8;
|
| + L2 = 3;
|
| + } else if (FS == 16000 || FS == 32000 || FS == 48000) {
|
| + L = 16;
|
| + L2 = 4;
|
| + } else {
|
| + return -1;
|
| + }
|
| +
|
| + for (i = 0; i < num_bands; ++i) {
|
| + if (in_near[i] != out[i]) {
|
| + // Only needed if they don't already point to the same place.
|
| + memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0]));
|
| }
|
| -
|
| - // Determine decay factor depending on VAD
|
| - // upper_thr = 1.0f;
|
| - // lower_thr = 0.25f;
|
| - upper_thr = 1024; // Q10
|
| - lower_thr = 0; // Q10
|
| - if (logratio > upper_thr)
|
| - {
|
| - // decay = -2^17 / DecayTime; -> -65
|
| - decay = -65;
|
| - } else if (logratio < lower_thr)
|
| - {
|
| - decay = 0;
|
| - } else
|
| - {
|
| - // decay = (int16_t)(((lower_thr - logratio)
|
| - // * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
|
| - // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr)) -> 65
|
| - tmp32 = (lower_thr - logratio) * 65;
|
| - decay = (int16_t)(tmp32 >> 10);
|
| + }
|
| + // VAD for near end
|
| + logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out[0], L * 10);
|
| +
|
| + // Account for far end VAD
|
| + if (stt->vadFarend.counter > 10) {
|
| + tmp32 = 3 * logratio;
|
| + logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2);
|
| + }
|
| +
|
| + // Determine decay factor depending on VAD
|
| + // upper_thr = 1.0f;
|
| + // lower_thr = 0.25f;
|
| + upper_thr = 1024; // Q10
|
| + lower_thr = 0; // Q10
|
| + if (logratio > upper_thr) {
|
| + // decay = -2^17 / DecayTime; -> -65
|
| + decay = -65;
|
| + } else if (logratio < lower_thr) {
|
| + decay = 0;
|
| + } else {
|
| + // decay = (int16_t)(((lower_thr - logratio)
|
| + // * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
|
| + // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr)) -> 65
|
| + tmp32 = (lower_thr - logratio) * 65;
|
| + decay = (int16_t)(tmp32 >> 10);
|
| + }
|
| +
|
| + // adjust decay factor for long silence (detected as low standard deviation)
|
| + // This is only done in the adaptive modes
|
| + if (stt->agcMode != kAgcModeFixedDigital) {
|
| + if (stt->vadNearend.stdLongTerm < 4000) {
|
| + decay = 0;
|
| + } else if (stt->vadNearend.stdLongTerm < 8096) {
|
| + // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >>
|
| + // 12);
|
| + tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
|
| + decay = (int16_t)(tmp32 >> 12);
|
| }
|
|
|
| - // adjust decay factor for long silence (detected as low standard deviation)
|
| - // This is only done in the adaptive modes
|
| - if (stt->agcMode != kAgcModeFixedDigital)
|
| - {
|
| - if (stt->vadNearend.stdLongTerm < 4000)
|
| - {
|
| - decay = 0;
|
| - } else if (stt->vadNearend.stdLongTerm < 8096)
|
| - {
|
| - // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12);
|
| - tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
|
| - decay = (int16_t)(tmp32 >> 12);
|
| - }
|
| -
|
| - if (lowlevelSignal != 0)
|
| - {
|
| - decay = 0;
|
| - }
|
| + if (lowlevelSignal != 0) {
|
| + decay = 0;
|
| }
|
| + }
|
| #ifdef WEBRTC_AGC_DEBUG_DUMP
|
| - stt->frameCounter++;
|
| - fprintf(stt->logFile,
|
| - "%5.2f\t%d\t%d\t%d\t",
|
| - (float)(stt->frameCounter) / 100,
|
| - logratio,
|
| - decay,
|
| - stt->vadNearend.stdLongTerm);
|
| + stt->frameCounter++;
|
| + fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100,
|
| + logratio, decay, stt->vadNearend.stdLongTerm);
|
| #endif
|
| - // Find max amplitude per sub frame
|
| - // iterate over sub frames
|
| - for (k = 0; k < 10; k++)
|
| - {
|
| - // iterate over samples
|
| - max_nrg = 0;
|
| - for (n = 0; n < L; n++)
|
| - {
|
| - int32_t nrg = out[0][k * L + n] * out[0][k * L + n];
|
| - if (nrg > max_nrg)
|
| - {
|
| - max_nrg = nrg;
|
| - }
|
| - }
|
| - env[k] = max_nrg;
|
| + // Find max amplitude per sub frame
|
| + // iterate over sub frames
|
| + for (k = 0; k < 10; k++) {
|
| + // iterate over samples
|
| + max_nrg = 0;
|
| + for (n = 0; n < L; n++) {
|
| + int32_t nrg = out[0][k * L + n] * out[0][k * L + n];
|
| + if (nrg > max_nrg) {
|
| + max_nrg = nrg;
|
| + }
|
| + }
|
| + env[k] = max_nrg;
|
| + }
|
| +
|
| + // Calculate gain per sub frame
|
| + gains[0] = stt->gain;
|
| + for (k = 0; k < 10; k++) {
|
| + // Fast envelope follower
|
| + // decay time = -131000 / -1000 = 131 (ms)
|
| + stt->capacitorFast =
|
| + AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
|
| + if (env[k] > stt->capacitorFast) {
|
| + stt->capacitorFast = env[k];
|
| + }
|
| + // Slow envelope follower
|
| + if (env[k] > stt->capacitorSlow) {
|
| + // increase capacitorSlow
|
| + stt->capacitorSlow = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow),
|
| + stt->capacitorSlow);
|
| + } else {
|
| + // decrease capacitorSlow
|
| + stt->capacitorSlow =
|
| + AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
|
| }
|
|
|
| - // Calculate gain per sub frame
|
| - gains[0] = stt->gain;
|
| - for (k = 0; k < 10; k++)
|
| - {
|
| - // Fast envelope follower
|
| - // decay time = -131000 / -1000 = 131 (ms)
|
| - stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
|
| - if (env[k] > stt->capacitorFast)
|
| - {
|
| - stt->capacitorFast = env[k];
|
| - }
|
| - // Slow envelope follower
|
| - if (env[k] > stt->capacitorSlow)
|
| - {
|
| - // increase capacitorSlow
|
| - stt->capacitorSlow
|
| - = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->capacitorSlow);
|
| - } else
|
| - {
|
| - // decrease capacitorSlow
|
| - stt->capacitorSlow
|
| - = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
|
| - }
|
| -
|
| - // use maximum of both capacitors as current level
|
| - if (stt->capacitorFast > stt->capacitorSlow)
|
| - {
|
| - cur_level = stt->capacitorFast;
|
| - } else
|
| - {
|
| - cur_level = stt->capacitorSlow;
|
| - }
|
| - // Translate signal level into gain, using a piecewise linear approximation
|
| - // find number of leading zeros
|
| - zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
|
| - if (cur_level == 0)
|
| - {
|
| - zeros = 31;
|
| - }
|
| - tmp32 = (cur_level << zeros) & 0x7FFFFFFF;
|
| - frac = (int16_t)(tmp32 >> 19); // Q12.
|
| - tmp32 = (stt->gainTable[zeros-1] - stt->gainTable[zeros]) * frac;
|
| - gains[k + 1] = stt->gainTable[zeros] + (tmp32 >> 12);
|
| + // use maximum of both capacitors as current level
|
| + if (stt->capacitorFast > stt->capacitorSlow) {
|
| + cur_level = stt->capacitorFast;
|
| + } else {
|
| + cur_level = stt->capacitorSlow;
|
| + }
|
| + // Translate signal level into gain, using a piecewise linear approximation
|
| + // find number of leading zeros
|
| + zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
|
| + if (cur_level == 0) {
|
| + zeros = 31;
|
| + }
|
| + tmp32 = (cur_level << zeros) & 0x7FFFFFFF;
|
| + frac = (int16_t)(tmp32 >> 19); // Q12.
|
| + tmp32 = (stt->gainTable[zeros - 1] - stt->gainTable[zeros]) * frac;
|
| + gains[k + 1] = stt->gainTable[zeros] + (tmp32 >> 12);
|
| #ifdef WEBRTC_AGC_DEBUG_DUMP
|
| - if (k == 0) {
|
| - fprintf(stt->logFile,
|
| - "%d\t%d\t%d\t%d\t%d\n",
|
| - env[0],
|
| - cur_level,
|
| - stt->capacitorFast,
|
| - stt->capacitorSlow,
|
| - zeros);
|
| - }
|
| + if (k == 0) {
|
| + fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level,
|
| + stt->capacitorFast, stt->capacitorSlow, zeros);
|
| + }
|
| #endif
|
| + }
|
| +
|
| + // Gate processing (lower gain during absence of speech)
|
| + zeros = (zeros << 9) - (frac >> 3);
|
| + // find number of leading zeros
|
| + zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
|
| + if (stt->capacitorFast == 0) {
|
| + zeros_fast = 31;
|
| + }
|
| + tmp32 = (stt->capacitorFast << zeros_fast) & 0x7FFFFFFF;
|
| + zeros_fast <<= 9;
|
| + zeros_fast -= (int16_t)(tmp32 >> 22);
|
| +
|
| + gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
|
| +
|
| + if (gate < 0) {
|
| + stt->gatePrevious = 0;
|
| + } else {
|
| + tmp32 = stt->gatePrevious * 7;
|
| + gate = (int16_t)((gate + tmp32) >> 3);
|
| + stt->gatePrevious = gate;
|
| + }
|
| + // gate < 0 -> no gate
|
| + // gate > 2500 -> max gate
|
| + if (gate > 0) {
|
| + if (gate < 2500) {
|
| + gain_adj = (2500 - gate) >> 5;
|
| + } else {
|
| + gain_adj = 0;
|
| }
|
| -
|
| - // Gate processing (lower gain during absence of speech)
|
| - zeros = (zeros << 9) - (frac >> 3);
|
| - // find number of leading zeros
|
| - zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
|
| - if (stt->capacitorFast == 0)
|
| - {
|
| - zeros_fast = 31;
|
| + for (k = 0; k < 10; k++) {
|
| + if ((gains[k + 1] - stt->gainTable[0]) > 8388608) {
|
| + // To prevent wraparound
|
| + tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8;
|
| + tmp32 *= 178 + gain_adj;
|
| + } else {
|
| + tmp32 = (gains[k + 1] - stt->gainTable[0]) * (178 + gain_adj);
|
| + tmp32 >>= 8;
|
| + }
|
| + gains[k + 1] = stt->gainTable[0] + tmp32;
|
| }
|
| - tmp32 = (stt->capacitorFast << zeros_fast) & 0x7FFFFFFF;
|
| - zeros_fast <<= 9;
|
| - zeros_fast -= (int16_t)(tmp32 >> 22);
|
| -
|
| - gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
|
| -
|
| - if (gate < 0)
|
| - {
|
| - stt->gatePrevious = 0;
|
| - } else
|
| - {
|
| - tmp32 = stt->gatePrevious * 7;
|
| - gate = (int16_t)((gate + tmp32) >> 3);
|
| - stt->gatePrevious = gate;
|
| + }
|
| +
|
| + // Limit gain to avoid overload distortion
|
| + for (k = 0; k < 10; k++) {
|
| + // To prevent wrap around
|
| + zeros = 10;
|
| + if (gains[k + 1] > 47453132) {
|
| + zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
|
| }
|
| - // gate < 0 -> no gate
|
| - // gate > 2500 -> max gate
|
| - if (gate > 0)
|
| - {
|
| - if (gate < 2500)
|
| - {
|
| - gain_adj = (2500 - gate) >> 5;
|
| - } else
|
| - {
|
| - gain_adj = 0;
|
| - }
|
| - for (k = 0; k < 10; k++)
|
| - {
|
| - if ((gains[k + 1] - stt->gainTable[0]) > 8388608)
|
| - {
|
| - // To prevent wraparound
|
| - tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8;
|
| - tmp32 *= 178 + gain_adj;
|
| - } else
|
| - {
|
| - tmp32 = (gains[k+1] - stt->gainTable[0]) * (178 + gain_adj);
|
| - tmp32 >>= 8;
|
| - }
|
| - gains[k + 1] = stt->gainTable[0] + tmp32;
|
| - }
|
| + gain32 = (gains[k + 1] >> zeros) + 1;
|
| + gain32 *= gain32;
|
| + // check for overflow
|
| + while (AGC_MUL32((env[k] >> 12) + 1, gain32) >
|
| + WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10))) {
|
| + // multiply by 253/256 ==> -0.1 dB
|
| + if (gains[k + 1] > 8388607) {
|
| + // Prevent wrap around
|
| + gains[k + 1] = (gains[k + 1] / 256) * 253;
|
| + } else {
|
| + gains[k + 1] = (gains[k + 1] * 253) / 256;
|
| + }
|
| + gain32 = (gains[k + 1] >> zeros) + 1;
|
| + gain32 *= gain32;
|
| }
|
| -
|
| - // Limit gain to avoid overload distortion
|
| - for (k = 0; k < 10; k++)
|
| - {
|
| - // To prevent wrap around
|
| - zeros = 10;
|
| - if (gains[k + 1] > 47453132)
|
| - {
|
| - zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
|
| - }
|
| - gain32 = (gains[k + 1] >> zeros) + 1;
|
| - gain32 *= gain32;
|
| - // check for overflow
|
| - while (AGC_MUL32((env[k] >> 12) + 1, gain32)
|
| - > WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10)))
|
| - {
|
| - // multiply by 253/256 ==> -0.1 dB
|
| - if (gains[k + 1] > 8388607)
|
| - {
|
| - // Prevent wrap around
|
| - gains[k + 1] = (gains[k+1] / 256) * 253;
|
| - } else
|
| - {
|
| - gains[k + 1] = (gains[k+1] * 253) / 256;
|
| - }
|
| - gain32 = (gains[k + 1] >> zeros) + 1;
|
| - gain32 *= gain32;
|
| - }
|
| + }
|
| + // gain reductions should be done 1 ms earlier than gain increases
|
| + for (k = 1; k < 10; k++) {
|
| + if (gains[k] > gains[k + 1]) {
|
| + gains[k] = gains[k + 1];
|
| }
|
| - // gain reductions should be done 1 ms earlier than gain increases
|
| - for (k = 1; k < 10; k++)
|
| - {
|
| - if (gains[k] > gains[k + 1])
|
| - {
|
| - gains[k] = gains[k + 1];
|
| - }
|
| + }
|
| + // save start gain for next frame
|
| + stt->gain = gains[10];
|
| +
|
| + // Apply gain
|
| + // handle first sub frame separately
|
| + delta = (gains[1] - gains[0]) * (1 << (4 - L2));
|
| + gain32 = gains[0] * (1 << 4);
|
| + // iterate over samples
|
| + for (n = 0; n < L; n++) {
|
| + for (i = 0; i < num_bands; ++i) {
|
| + tmp32 = out[i][n] * ((gain32 + 127) >> 7);
|
| + out_tmp = tmp32 >> 16;
|
| + if (out_tmp > 4095) {
|
| + out[i][n] = (int16_t)32767;
|
| + } else if (out_tmp < -4096) {
|
| + out[i][n] = (int16_t)-32768;
|
| + } else {
|
| + tmp32 = out[i][n] * (gain32 >> 4);
|
| + out[i][n] = (int16_t)(tmp32 >> 16);
|
| + }
|
| }
|
| - // save start gain for next frame
|
| - stt->gain = gains[10];
|
| -
|
| - // Apply gain
|
| - // handle first sub frame separately
|
| - delta = (gains[1] - gains[0]) * (1 << (4 - L2));
|
| - gain32 = gains[0] * (1 << 4);
|
| + //
|
| +
|
| + gain32 += delta;
|
| + }
|
| + // iterate over subframes
|
| + for (k = 1; k < 10; k++) {
|
| + delta = (gains[k + 1] - gains[k]) * (1 << (4 - L2));
|
| + gain32 = gains[k] * (1 << 4);
|
| // iterate over samples
|
| - for (n = 0; n < L; n++)
|
| - {
|
| - for (i = 0; i < num_bands; ++i)
|
| - {
|
| - tmp32 = out[i][n] * ((gain32 + 127) >> 7);
|
| - out_tmp = tmp32 >> 16;
|
| - if (out_tmp > 4095)
|
| - {
|
| - out[i][n] = (int16_t)32767;
|
| - } else if (out_tmp < -4096)
|
| - {
|
| - out[i][n] = (int16_t)-32768;
|
| - } else
|
| - {
|
| - tmp32 = out[i][n] * (gain32 >> 4);
|
| - out[i][n] = (int16_t)(tmp32 >> 16);
|
| - }
|
| - }
|
| - //
|
| -
|
| - gain32 += delta;
|
| - }
|
| - // iterate over subframes
|
| - for (k = 1; k < 10; k++)
|
| - {
|
| - delta = (gains[k+1] - gains[k]) * (1 << (4 - L2));
|
| - gain32 = gains[k] * (1 << 4);
|
| - // iterate over samples
|
| - for (n = 0; n < L; n++)
|
| - {
|
| - for (i = 0; i < num_bands; ++i)
|
| - {
|
| - tmp32 = out[i][k * L + n] * (gain32 >> 4);
|
| - out[i][k * L + n] = (int16_t)(tmp32 >> 16);
|
| - }
|
| - gain32 += delta;
|
| - }
|
| + for (n = 0; n < L; n++) {
|
| + for (i = 0; i < num_bands; ++i) {
|
| + tmp32 = out[i][k * L + n] * (gain32 >> 4);
|
| + out[i][k * L + n] = (int16_t)(tmp32 >> 16);
|
| + }
|
| + gain32 += delta;
|
| }
|
| + }
|
|
|
| - return 0;
|
| + return 0;
|
| }
|
|
|
| void WebRtcAgc_InitVad(AgcVad* state) {
|
| - int16_t k;
|
| -
|
| - state->HPstate = 0; // state of high pass filter
|
| - state->logRatio = 0; // log( P(active) / P(inactive) )
|
| - // average input level (Q10)
|
| - state->meanLongTerm = 15 << 10;
|
| -
|
| - // variance of input level (Q8)
|
| - state->varianceLongTerm = 500 << 8;
|
| -
|
| - state->stdLongTerm = 0; // standard deviation of input level in dB
|
| - // short-term average input level (Q10)
|
| - state->meanShortTerm = 15 << 10;
|
| -
|
| - // short-term variance of input level (Q8)
|
| - state->varianceShortTerm = 500 << 8;
|
| -
|
| - state->stdShortTerm = 0; // short-term standard deviation of input level in dB
|
| - state->counter = 3; // counts updates
|
| - for (k = 0; k < 8; k++)
|
| - {
|
| - // downsampling filter
|
| - state->downState[k] = 0;
|
| - }
|
| + int16_t k;
|
| +
|
| + state->HPstate = 0; // state of high pass filter
|
| + state->logRatio = 0; // log( P(active) / P(inactive) )
|
| + // average input level (Q10)
|
| + state->meanLongTerm = 15 << 10;
|
| +
|
| + // variance of input level (Q8)
|
| + state->varianceLongTerm = 500 << 8;
|
| +
|
| + state->stdLongTerm = 0; // standard deviation of input level in dB
|
| + // short-term average input level (Q10)
|
| + state->meanShortTerm = 15 << 10;
|
| +
|
| + // short-term variance of input level (Q8)
|
| + state->varianceShortTerm = 500 << 8;
|
| +
|
| + state->stdShortTerm =
|
| + 0; // short-term standard deviation of input level in dB
|
| + state->counter = 3; // counts updates
|
| + for (k = 0; k < 8; k++) {
|
| + // downsampling filter
|
| + state->downState[k] = 0;
|
| + }
|
| }
|
|
|
| int16_t WebRtcAgc_ProcessVad(AgcVad* state, // (i) VAD state
|
| const int16_t* in, // (i) Speech signal
|
| - size_t nrSamples) // (i) number of samples
|
| + size_t nrSamples) // (i) number of samples
|
| {
|
| - int32_t out, nrg, tmp32, tmp32b;
|
| - uint16_t tmpU16;
|
| - int16_t k, subfr, tmp16;
|
| - int16_t buf1[8];
|
| - int16_t buf2[4];
|
| - int16_t HPstate;
|
| - int16_t zeros, dB;
|
| -
|
| - // process in 10 sub frames of 1 ms (to save on memory)
|
| - nrg = 0;
|
| - HPstate = state->HPstate;
|
| - for (subfr = 0; subfr < 10; subfr++)
|
| - {
|
| - // downsample to 4 kHz
|
| - if (nrSamples == 160)
|
| - {
|
| - for (k = 0; k < 8; k++)
|
| - {
|
| - tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
|
| - tmp32 >>= 1;
|
| - buf1[k] = (int16_t)tmp32;
|
| - }
|
| - in += 16;
|
| -
|
| - WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
|
| - } else
|
| - {
|
| - WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
|
| - in += 8;
|
| - }
|
| -
|
| - // high pass filter and compute energy
|
| - for (k = 0; k < 4; k++)
|
| - {
|
| - out = buf2[k] + HPstate;
|
| - tmp32 = 600 * out;
|
| - HPstate = (int16_t)((tmp32 >> 10) - buf2[k]);
|
| - nrg += (out * out) >> 6;
|
| - }
|
| + int32_t out, nrg, tmp32, tmp32b;
|
| + uint16_t tmpU16;
|
| + int16_t k, subfr, tmp16;
|
| + int16_t buf1[8];
|
| + int16_t buf2[4];
|
| + int16_t HPstate;
|
| + int16_t zeros, dB;
|
| +
|
| + // process in 10 sub frames of 1 ms (to save on memory)
|
| + nrg = 0;
|
| + HPstate = state->HPstate;
|
| + for (subfr = 0; subfr < 10; subfr++) {
|
| + // downsample to 4 kHz
|
| + if (nrSamples == 160) {
|
| + for (k = 0; k < 8; k++) {
|
| + tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
|
| + tmp32 >>= 1;
|
| + buf1[k] = (int16_t)tmp32;
|
| + }
|
| + in += 16;
|
| +
|
| + WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
|
| + } else {
|
| + WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
|
| + in += 8;
|
| }
|
| - state->HPstate = HPstate;
|
|
|
| - // find number of leading zeros
|
| - if (!(0xFFFF0000 & nrg))
|
| - {
|
| - zeros = 16;
|
| - } else
|
| - {
|
| - zeros = 0;
|
| - }
|
| - if (!(0xFF000000 & (nrg << zeros)))
|
| - {
|
| - zeros += 8;
|
| - }
|
| - if (!(0xF0000000 & (nrg << zeros)))
|
| - {
|
| - zeros += 4;
|
| - }
|
| - if (!(0xC0000000 & (nrg << zeros)))
|
| - {
|
| - zeros += 2;
|
| + // high pass filter and compute energy
|
| + for (k = 0; k < 4; k++) {
|
| + out = buf2[k] + HPstate;
|
| + tmp32 = 600 * out;
|
| + HPstate = (int16_t)((tmp32 >> 10) - buf2[k]);
|
| + nrg += (out * out) >> 6;
|
| }
|
| - if (!(0x80000000 & (nrg << zeros)))
|
| - {
|
| - zeros += 1;
|
| - }
|
| -
|
| - // energy level (range {-32..30}) (Q10)
|
| - dB = (15 - zeros) << 11;
|
| -
|
| - // Update statistics
|
| -
|
| - if (state->counter < kAvgDecayTime)
|
| - {
|
| - // decay time = AvgDecTime * 10 ms
|
| - state->counter++;
|
| - }
|
| -
|
| - // update short-term estimate of mean energy level (Q10)
|
| - tmp32 = state->meanShortTerm * 15 + dB;
|
| - state->meanShortTerm = (int16_t)(tmp32 >> 4);
|
| -
|
| - // update short-term estimate of variance in energy level (Q8)
|
| - tmp32 = (dB * dB) >> 12;
|
| - tmp32 += state->varianceShortTerm * 15;
|
| - state->varianceShortTerm = tmp32 / 16;
|
| -
|
| - // update short-term estimate of standard deviation in energy level (Q10)
|
| - tmp32 = state->meanShortTerm * state->meanShortTerm;
|
| - tmp32 = (state->varianceShortTerm << 12) - tmp32;
|
| - state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
|
| -
|
| - // update long-term estimate of mean energy level (Q10)
|
| - tmp32 = state->meanLongTerm * state->counter + dB;
|
| - state->meanLongTerm = WebRtcSpl_DivW32W16ResW16(
|
| - tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
|
| -
|
| - // update long-term estimate of variance in energy level (Q8)
|
| - tmp32 = (dB * dB) >> 12;
|
| - tmp32 += state->varianceLongTerm * state->counter;
|
| - state->varianceLongTerm = WebRtcSpl_DivW32W16(
|
| - tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
|
| -
|
| - // update long-term estimate of standard deviation in energy level (Q10)
|
| - tmp32 = state->meanLongTerm * state->meanLongTerm;
|
| - tmp32 = (state->varianceLongTerm << 12) - tmp32;
|
| - state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
|
| -
|
| - // update voice activity measure (Q10)
|
| - tmp16 = 3 << 12;
|
| - // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in
|
| - // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16()
|
| - // was used, which did an intermediate cast to (int16_t), hence losing
|
| - // significant bits. This cause logRatio to max out positive, rather than
|
| - // negative. This is a bug, but has very little significance.
|
| - tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm);
|
| - tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
|
| - tmpU16 = (13 << 12);
|
| - tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
|
| - tmp32 += tmp32b >> 10;
|
| -
|
| - state->logRatio = (int16_t)(tmp32 >> 6);
|
| -
|
| - // limit
|
| - if (state->logRatio > 2048)
|
| - {
|
| - state->logRatio = 2048;
|
| - }
|
| - if (state->logRatio < -2048)
|
| - {
|
| - state->logRatio = -2048;
|
| - }
|
| -
|
| - return state->logRatio; // Q10
|
| + }
|
| + state->HPstate = HPstate;
|
| +
|
| + // find number of leading zeros
|
| + if (!(0xFFFF0000 & nrg)) {
|
| + zeros = 16;
|
| + } else {
|
| + zeros = 0;
|
| + }
|
| + if (!(0xFF000000 & (nrg << zeros))) {
|
| + zeros += 8;
|
| + }
|
| + if (!(0xF0000000 & (nrg << zeros))) {
|
| + zeros += 4;
|
| + }
|
| + if (!(0xC0000000 & (nrg << zeros))) {
|
| + zeros += 2;
|
| + }
|
| + if (!(0x80000000 & (nrg << zeros))) {
|
| + zeros += 1;
|
| + }
|
| +
|
| + // energy level (range {-32..30}) (Q10)
|
| + dB = (15 - zeros) << 11;
|
| +
|
| + // Update statistics
|
| +
|
| + if (state->counter < kAvgDecayTime) {
|
| + // decay time = AvgDecTime * 10 ms
|
| + state->counter++;
|
| + }
|
| +
|
| + // update short-term estimate of mean energy level (Q10)
|
| + tmp32 = state->meanShortTerm * 15 + dB;
|
| + state->meanShortTerm = (int16_t)(tmp32 >> 4);
|
| +
|
| + // update short-term estimate of variance in energy level (Q8)
|
| + tmp32 = (dB * dB) >> 12;
|
| + tmp32 += state->varianceShortTerm * 15;
|
| + state->varianceShortTerm = tmp32 / 16;
|
| +
|
| + // update short-term estimate of standard deviation in energy level (Q10)
|
| + tmp32 = state->meanShortTerm * state->meanShortTerm;
|
| + tmp32 = (state->varianceShortTerm << 12) - tmp32;
|
| + state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
|
| +
|
| + // update long-term estimate of mean energy level (Q10)
|
| + tmp32 = state->meanLongTerm * state->counter + dB;
|
| + state->meanLongTerm =
|
| + WebRtcSpl_DivW32W16ResW16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
|
| +
|
| + // update long-term estimate of variance in energy level (Q8)
|
| + tmp32 = (dB * dB) >> 12;
|
| + tmp32 += state->varianceLongTerm * state->counter;
|
| + state->varianceLongTerm =
|
| + WebRtcSpl_DivW32W16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
|
| +
|
| + // update long-term estimate of standard deviation in energy level (Q10)
|
| + tmp32 = state->meanLongTerm * state->meanLongTerm;
|
| + tmp32 = (state->varianceLongTerm << 12) - tmp32;
|
| + state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
|
| +
|
| + // update voice activity measure (Q10)
|
| + tmp16 = 3 << 12;
|
| + // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in
|
| + // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16()
|
| + // was used, which did an intermediate cast to (int16_t), hence losing
|
| + // significant bits. This cause logRatio to max out positive, rather than
|
| + // negative. This is a bug, but has very little significance.
|
| + tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm);
|
| + tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
|
| + tmpU16 = (13 << 12);
|
| + tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
|
| + tmp32 += tmp32b >> 10;
|
| +
|
| + state->logRatio = (int16_t)(tmp32 >> 6);
|
| +
|
| + // limit
|
| + if (state->logRatio > 2048) {
|
| + state->logRatio = 2048;
|
| + }
|
| + if (state->logRatio < -2048) {
|
| + state->logRatio = -2048;
|
| + }
|
| +
|
| + return state->logRatio; // Q10
|
| }
|
|
|