| Index: webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc
|
| diff --git a/webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc b/webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc
|
| index 86b6f6ecd6b58efd16d7847ac32110b8a8407e27..64a2a94b7eb8078328c343277b12b653cdf19749 100644
|
| --- a/webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc
|
| +++ b/webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc
|
| @@ -8,235 +8,214 @@
|
| * be found in the AUTHORS file in the root of the source tree.
|
| */
|
|
|
| +#include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h"
|
| +
|
| #include <string.h>
|
| +#include <vector>
|
|
|
| +#include "webrtc/base/checks.h"
|
| #include "webrtc/base/logging.h"
|
| #include "webrtc/modules/include/module_common_types.h"
|
| #include "webrtc/modules/rtp_rtcp/source/byte_io.h"
|
| -#include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h"
|
| -#include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h"
|
| +#include "webrtc/common_video/h264/sps_vui_rewriter.h"
|
| +#include "webrtc/common_video/h264/h264_common.h"
|
| +#include "webrtc/common_video/h264/sps_parser.h"
|
| +#include "webrtc/system_wrappers/include/metrics.h"
|
|
|
| namespace webrtc {
|
| namespace {
|
|
|
| -enum Nalu {
|
| - kSlice = 1,
|
| - kIdr = 5,
|
| - kSei = 6,
|
| - kSps = 7,
|
| - kPps = 8,
|
| - kStapA = 24,
|
| - kFuA = 28
|
| -};
|
| -
|
| static const size_t kNalHeaderSize = 1;
|
| static const size_t kFuAHeaderSize = 2;
|
| static const size_t kLengthFieldSize = 2;
|
| static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize;
|
|
|
| +static const char* kSpsValidHistogramName = "WebRTC.Video.H264.SpsValid";
|
| +enum SpsValidEvent {
|
| + kReceivedSpsPocOk = 0,
|
| + kReceivedSpsVuiOk = 1,
|
| + kReceivedSpsRewritten = 2,
|
| + kReceivedSpsParseFailure = 3,
|
| + kSentSpsPocOk = 4,
|
| + kSentSpsVuiOk = 5,
|
| + kSentSpsRewritten = 6,
|
| + kSentSpsParseFailure = 7,
|
| + kSpsRewrittenMax = 8
|
| +};
|
| +
|
| // Bit masks for FU (A and B) indicators.
|
| -enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
|
| +enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
|
|
|
| // Bit masks for FU (A and B) headers.
|
| -enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
|
| +enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
|
|
|
| // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer.
|
| -bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) {
|
| +bool ParseStapAStartOffsets(const uint8_t* nalu_ptr,
|
| + size_t length_remaining,
|
| + std::vector<size_t>* offsets) {
|
| + size_t offset = 0;
|
| while (length_remaining > 0) {
|
| // Buffer doesn't contain room for additional nalu length.
|
| if (length_remaining < sizeof(uint16_t))
|
| return false;
|
| - uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1];
|
| + uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr);
|
| nalu_ptr += sizeof(uint16_t);
|
| length_remaining -= sizeof(uint16_t);
|
| if (nalu_size > length_remaining)
|
| return false;
|
| nalu_ptr += nalu_size;
|
| length_remaining -= nalu_size;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
|
| - const uint8_t* payload_data,
|
| - size_t payload_data_length) {
|
| - parsed_payload->type.Video.width = 0;
|
| - parsed_payload->type.Video.height = 0;
|
| - parsed_payload->type.Video.codec = kRtpVideoH264;
|
| - parsed_payload->type.Video.isFirstPacket = true;
|
| - RTPVideoHeaderH264* h264_header =
|
| - &parsed_payload->type.Video.codecHeader.H264;
|
| -
|
| - const uint8_t* nalu_start = payload_data + kNalHeaderSize;
|
| - size_t nalu_length = payload_data_length - kNalHeaderSize;
|
| - uint8_t nal_type = payload_data[0] & kTypeMask;
|
| - if (nal_type == kStapA) {
|
| - // Skip the StapA header (StapA nal type + length).
|
| - if (payload_data_length <= kStapAHeaderSize) {
|
| - LOG(LS_ERROR) << "StapA header truncated.";
|
| - return false;
|
| - }
|
| - if (!VerifyStapANaluLengths(nalu_start, nalu_length)) {
|
| - LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
|
| - return false;
|
| - }
|
| -
|
| - nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
|
| - nalu_start += kStapAHeaderSize;
|
| - nalu_length -= kStapAHeaderSize;
|
| - h264_header->packetization_type = kH264StapA;
|
| - } else {
|
| - h264_header->packetization_type = kH264SingleNalu;
|
| - }
|
| - h264_header->nalu_type = nal_type;
|
|
|
| - // We can read resolution out of sps packets.
|
| - if (nal_type == kSps) {
|
| - H264SpsParser parser(nalu_start, nalu_length);
|
| - if (parser.Parse()) {
|
| - parsed_payload->type.Video.width = parser.width();
|
| - parsed_payload->type.Video.height = parser.height();
|
| - }
|
| - }
|
| - switch (nal_type) {
|
| - case kSps:
|
| - case kPps:
|
| - case kSei:
|
| - case kIdr:
|
| - parsed_payload->frame_type = kVideoFrameKey;
|
| - break;
|
| - default:
|
| - parsed_payload->frame_type = kVideoFrameDelta;
|
| - break;
|
| + offsets->push_back(offset + kStapAHeaderSize);
|
| + offset += kLengthFieldSize + nalu_size;
|
| }
|
| return true;
|
| }
|
|
|
| -bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
|
| - const uint8_t* payload_data,
|
| - size_t payload_data_length,
|
| - size_t* offset) {
|
| - if (payload_data_length < kFuAHeaderSize) {
|
| - LOG(LS_ERROR) << "FU-A NAL units truncated.";
|
| - return false;
|
| - }
|
| - uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
|
| - uint8_t original_nal_type = payload_data[1] & kTypeMask;
|
| - bool first_fragment = (payload_data[1] & kSBit) > 0;
|
| -
|
| - uint8_t original_nal_header = fnri | original_nal_type;
|
| - if (first_fragment) {
|
| - *offset = kNalHeaderSize;
|
| - uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset);
|
| - payload[0] = original_nal_header;
|
| - } else {
|
| - *offset = kFuAHeaderSize;
|
| - }
|
| -
|
| - if (original_nal_type == kIdr) {
|
| - parsed_payload->frame_type = kVideoFrameKey;
|
| - } else {
|
| - parsed_payload->frame_type = kVideoFrameDelta;
|
| - }
|
| - parsed_payload->type.Video.width = 0;
|
| - parsed_payload->type.Video.height = 0;
|
| - parsed_payload->type.Video.codec = kRtpVideoH264;
|
| - parsed_payload->type.Video.isFirstPacket = first_fragment;
|
| - RTPVideoHeaderH264* h264_header =
|
| - &parsed_payload->type.Video.codecHeader.H264;
|
| - h264_header->packetization_type = kH264FuA;
|
| - h264_header->nalu_type = original_nal_type;
|
| - return true;
|
| -}
|
| } // namespace
|
|
|
| RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type,
|
| size_t max_payload_len)
|
| - : payload_data_(NULL),
|
| - payload_size_(0),
|
| - max_payload_len_(max_payload_len) {
|
| -}
|
| + : max_payload_len_(max_payload_len) {}
|
|
|
| RtpPacketizerH264::~RtpPacketizerH264() {
|
| }
|
|
|
| +RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length)
|
| + : buffer(buffer), length(length) {}
|
| +RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment)
|
| + : buffer(fragment.buffer), length(fragment.length) {}
|
| +
|
| void RtpPacketizerH264::SetPayloadData(
|
| const uint8_t* payload_data,
|
| size_t payload_size,
|
| const RTPFragmentationHeader* fragmentation) {
|
| - assert(packets_.empty());
|
| - assert(fragmentation);
|
| - payload_data_ = payload_data;
|
| - payload_size_ = payload_size;
|
| - fragmentation_.CopyFrom(*fragmentation);
|
| + RTC_DCHECK(packets_.empty());
|
| + RTC_DCHECK(input_fragments_.empty());
|
| + RTC_DCHECK(fragmentation);
|
| + for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) {
|
| + const uint8_t* buffer =
|
| + &payload_data[fragmentation->fragmentationOffset[i]];
|
| + size_t length = fragmentation->fragmentationLength[i];
|
| +
|
| + bool updated_sps = false;
|
| + H264::NaluType nalu_type = H264::ParseNaluType(buffer[0]);
|
| + if (nalu_type == H264::NaluType::kSps) {
|
| + // Check if stream uses picture order count type 0, and if so rewrite it
|
| + // to enable faster decoding. Streams in that format incur additional
|
| + // delay because it allows decode order to differ from render order.
|
| + // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain
|
| + // restrictions on the maximum number of reordered pictures. This reduces
|
| + // latency significantly, though it still adds about a frame of latency to
|
| + // decoding.
|
| + // Note that we do this rewriting both here (send side, in order to
|
| + // protect legacy receive clients) and below in
|
| + // RtpDepacketizerH264::ParseSingleNalu (receive side, in orderer to
|
| + // protect us from unknown or legacy send clients).
|
| +
|
| + // Create temporary RBSP decoded buffer of the payload (exlcuding the
|
| + // leading nalu type header byte (the SpsParser uses only the payload).
|
| + std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp(
|
| + buffer + H264::kNaluTypeSize, length - H264::kNaluTypeSize);
|
| + rtc::Optional<SpsParser::SpsState> sps;
|
| +
|
| + std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer());
|
| + // Add the type header to the output buffer first, so that the rewriter
|
| + // can append modified payload on top of that.
|
| + output_buffer->AppendData(buffer[0]);
|
| + SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps(
|
| + rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get());
|
| +
|
| + switch (result) {
|
| + case SpsVuiRewriter::ParseResult::kVuiRewritten:
|
| + input_fragments_.push_back(
|
| + Fragment(output_buffer->data(), output_buffer->size()));
|
| + input_fragments_.rbegin()->tmp_buffer = std::move(output_buffer);
|
| + updated_sps = true;
|
| + RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
|
| + SpsValidEvent::kSentSpsRewritten,
|
| + SpsValidEvent::kSpsRewrittenMax);
|
| + break;
|
| + case SpsVuiRewriter::ParseResult::kPocOk:
|
| + RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
|
| + SpsValidEvent::kSentSpsPocOk,
|
| + SpsValidEvent::kSpsRewrittenMax);
|
| + break;
|
| + case SpsVuiRewriter::ParseResult::kVuiOk:
|
| + RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
|
| + SpsValidEvent::kSentSpsVuiOk,
|
| + SpsValidEvent::kSpsRewrittenMax);
|
| + break;
|
| + case SpsVuiRewriter::ParseResult::kFailure:
|
| + RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
|
| + SpsValidEvent::kSentSpsParseFailure,
|
| + SpsValidEvent::kSpsRewrittenMax);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (!updated_sps)
|
| + input_fragments_.push_back(Fragment(buffer, length));
|
| + }
|
| GeneratePackets();
|
| }
|
|
|
| void RtpPacketizerH264::GeneratePackets() {
|
| - for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) {
|
| - size_t fragment_offset = fragmentation_.fragmentationOffset[i];
|
| - size_t fragment_length = fragmentation_.fragmentationLength[i];
|
| - if (fragment_length > max_payload_len_) {
|
| - PacketizeFuA(fragment_offset, fragment_length);
|
| + for (size_t i = 0; i < input_fragments_.size();) {
|
| + if (input_fragments_[i].length > max_payload_len_) {
|
| + PacketizeFuA(i);
|
| ++i;
|
| } else {
|
| - i = PacketizeStapA(i, fragment_offset, fragment_length);
|
| + i = PacketizeStapA(i);
|
| }
|
| }
|
| }
|
|
|
| -void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset,
|
| - size_t fragment_length) {
|
| +void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) {
|
| // Fragment payload into packets (FU-A).
|
| // Strip out the original header and leave room for the FU-A header.
|
| - fragment_length -= kNalHeaderSize;
|
| - size_t offset = fragment_offset + kNalHeaderSize;
|
| + const Fragment& fragment = input_fragments_[fragment_index];
|
| +
|
| + size_t fragment_length = fragment.length - kNalHeaderSize;
|
| + size_t offset = kNalHeaderSize;
|
| size_t bytes_available = max_payload_len_ - kFuAHeaderSize;
|
| - size_t fragments =
|
| + const size_t num_fragments =
|
| (fragment_length + (bytes_available - 1)) / bytes_available;
|
| - size_t avg_size = (fragment_length + fragments - 1) / fragments;
|
| +
|
| + const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments;
|
| while (fragment_length > 0) {
|
| size_t packet_length = avg_size;
|
| if (fragment_length < avg_size)
|
| packet_length = fragment_length;
|
| - uint8_t header = payload_data_[fragment_offset];
|
| - packets_.push(Packet(offset,
|
| - packet_length,
|
| - offset - kNalHeaderSize == fragment_offset,
|
| - fragment_length == packet_length,
|
| - false,
|
| - header));
|
| + packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length),
|
| + offset - kNalHeaderSize == 0,
|
| + fragment_length == packet_length, false,
|
| + fragment.buffer[0]));
|
| offset += packet_length;
|
| fragment_length -= packet_length;
|
| }
|
| + RTC_CHECK_EQ(0u, fragment_length);
|
| }
|
|
|
| -int RtpPacketizerH264::PacketizeStapA(size_t fragment_index,
|
| - size_t fragment_offset,
|
| - size_t fragment_length) {
|
| +size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) {
|
| // Aggregate fragments into one packet (STAP-A).
|
| size_t payload_size_left = max_payload_len_;
|
| int aggregated_fragments = 0;
|
| size_t fragment_headers_length = 0;
|
| - assert(payload_size_left >= fragment_length);
|
| - while (payload_size_left >= fragment_length + fragment_headers_length) {
|
| - assert(fragment_length > 0);
|
| - uint8_t header = payload_data_[fragment_offset];
|
| - packets_.push(Packet(fragment_offset,
|
| - fragment_length,
|
| - aggregated_fragments == 0,
|
| - false,
|
| - true,
|
| - header));
|
| - payload_size_left -= fragment_length;
|
| + const Fragment* fragment = &input_fragments_[fragment_index];
|
| + RTC_CHECK_GE(payload_size_left, fragment->length);
|
| + while (payload_size_left >= fragment->length + fragment_headers_length) {
|
| + RTC_CHECK_GT(fragment->length, 0u);
|
| + packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true,
|
| + fragment->buffer[0]));
|
| + payload_size_left -= fragment->length;
|
| payload_size_left -= fragment_headers_length;
|
|
|
| // Next fragment.
|
| ++fragment_index;
|
| - if (fragment_index == fragmentation_.fragmentationVectorSize)
|
| + if (fragment_index == input_fragments_.size())
|
| break;
|
| - fragment_offset = fragmentation_.fragmentationOffset[fragment_index];
|
| - fragment_length = fragmentation_.fragmentationLength[fragment_index];
|
| + fragment = &input_fragments_[fragment_index];
|
|
|
| fragment_headers_length = kLengthFieldSize;
|
| // If we are going to try to aggregate more fragments into this packet
|
| @@ -260,20 +239,21 @@ bool RtpPacketizerH264::NextPacket(uint8_t* buffer,
|
| return false;
|
| }
|
|
|
| - Packet packet = packets_.front();
|
| + PacketUnit packet = packets_.front();
|
|
|
| if (packet.first_fragment && packet.last_fragment) {
|
| // Single NAL unit packet.
|
| - *bytes_to_send = packet.size;
|
| - memcpy(buffer, &payload_data_[packet.offset], packet.size);
|
| + *bytes_to_send = packet.source_fragment.length;
|
| + memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send);
|
| packets_.pop();
|
| - assert(*bytes_to_send <= max_payload_len_);
|
| + input_fragments_.pop_front();
|
| + RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
|
| } else if (packet.aggregated) {
|
| NextAggregatePacket(buffer, bytes_to_send);
|
| - assert(*bytes_to_send <= max_payload_len_);
|
| + RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
|
| } else {
|
| NextFragmentPacket(buffer, bytes_to_send);
|
| - assert(*bytes_to_send <= max_payload_len_);
|
| + RTC_CHECK_LE(*bytes_to_send, max_payload_len_);
|
| }
|
| *last_packet = packets_.empty();
|
| return true;
|
| @@ -281,53 +261,54 @@ bool RtpPacketizerH264::NextPacket(uint8_t* buffer,
|
|
|
| void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer,
|
| size_t* bytes_to_send) {
|
| - Packet packet = packets_.front();
|
| - assert(packet.first_fragment);
|
| + PacketUnit* packet = &packets_.front();
|
| + RTC_CHECK(packet->first_fragment);
|
| // STAP-A NALU header.
|
| - buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA;
|
| + buffer[0] = (packet->header & (kFBit | kNriMask)) | H264::NaluType::kStapA;
|
| int index = kNalHeaderSize;
|
| *bytes_to_send += kNalHeaderSize;
|
| - while (packet.aggregated) {
|
| + while (packet->aggregated) {
|
| + const Fragment& fragment = packet->source_fragment;
|
| // Add NAL unit length field.
|
| - ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size);
|
| + ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length);
|
| index += kLengthFieldSize;
|
| *bytes_to_send += kLengthFieldSize;
|
| // Add NAL unit.
|
| - memcpy(&buffer[index], &payload_data_[packet.offset], packet.size);
|
| - index += packet.size;
|
| - *bytes_to_send += packet.size;
|
| + memcpy(&buffer[index], fragment.buffer, fragment.length);
|
| + index += fragment.length;
|
| + *bytes_to_send += fragment.length;
|
| packets_.pop();
|
| - if (packet.last_fragment)
|
| + input_fragments_.pop_front();
|
| + if (packet->last_fragment)
|
| break;
|
| - packet = packets_.front();
|
| + packet = &packets_.front();
|
| }
|
| - assert(packet.last_fragment);
|
| + RTC_CHECK(packet->last_fragment);
|
| }
|
|
|
| void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer,
|
| size_t* bytes_to_send) {
|
| - Packet packet = packets_.front();
|
| + PacketUnit* packet = &packets_.front();
|
| // NAL unit fragmented over multiple packets (FU-A).
|
| // We do not send original NALU header, so it will be replaced by the
|
| // FU indicator header of the first packet.
|
| - uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA;
|
| + uint8_t fu_indicator =
|
| + (packet->header & (kFBit | kNriMask)) | H264::NaluType::kFuA;
|
| uint8_t fu_header = 0;
|
|
|
| // S | E | R | 5 bit type.
|
| - fu_header |= (packet.first_fragment ? kSBit : 0);
|
| - fu_header |= (packet.last_fragment ? kEBit : 0);
|
| - uint8_t type = packet.header & kTypeMask;
|
| + fu_header |= (packet->first_fragment ? kSBit : 0);
|
| + fu_header |= (packet->last_fragment ? kEBit : 0);
|
| + uint8_t type = packet->header & kTypeMask;
|
| fu_header |= type;
|
| buffer[0] = fu_indicator;
|
| buffer[1] = fu_header;
|
|
|
| - if (packet.last_fragment) {
|
| - *bytes_to_send = packet.size + kFuAHeaderSize;
|
| - memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
|
| - } else {
|
| - *bytes_to_send = packet.size + kFuAHeaderSize;
|
| - memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
|
| - }
|
| + const Fragment& fragment = packet->source_fragment;
|
| + *bytes_to_send = fragment.length + kFuAHeaderSize;
|
| + memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length);
|
| + if (packet->last_fragment)
|
| + input_fragments_.pop_front();
|
| packets_.pop();
|
| }
|
|
|
| @@ -344,32 +325,202 @@ std::string RtpPacketizerH264::ToString() {
|
| return "RtpPacketizerH264";
|
| }
|
|
|
| +RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {}
|
| +RtpDepacketizerH264::~RtpDepacketizerH264() {}
|
| +
|
| bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload,
|
| const uint8_t* payload_data,
|
| size_t payload_data_length) {
|
| - assert(parsed_payload != NULL);
|
| + RTC_CHECK(parsed_payload != nullptr);
|
| if (payload_data_length == 0) {
|
| LOG(LS_ERROR) << "Empty payload.";
|
| return false;
|
| }
|
|
|
| + offset_ = 0;
|
| + length_ = payload_data_length;
|
| + modified_buffer_.reset();
|
| +
|
| uint8_t nal_type = payload_data[0] & kTypeMask;
|
| - size_t offset = 0;
|
| - if (nal_type == kFuA) {
|
| + if (nal_type == H264::NaluType::kFuA) {
|
| // Fragmented NAL units (FU-A).
|
| - if (!ParseFuaNalu(
|
| - parsed_payload, payload_data, payload_data_length, &offset)) {
|
| + if (!ParseFuaNalu(parsed_payload, payload_data))
|
| return false;
|
| - }
|
| } else {
|
| // We handle STAP-A and single NALU's the same way here. The jitter buffer
|
| // will depacketize the STAP-A into NAL units later.
|
| - if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length))
|
| + // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec.
|
| + if (!ProcessStapAOrSingleNalu(parsed_payload, payload_data))
|
| + return false;
|
| + }
|
| +
|
| + const uint8_t* payload =
|
| + modified_buffer_ ? modified_buffer_->data() : payload_data;
|
| +
|
| + parsed_payload->payload = payload + offset_;
|
| + parsed_payload->payload_length = length_;
|
| + return true;
|
| +}
|
| +
|
| +bool RtpDepacketizerH264::ProcessStapAOrSingleNalu(
|
| + ParsedPayload* parsed_payload,
|
| + const uint8_t* payload_data) {
|
| + parsed_payload->type.Video.width = 0;
|
| + parsed_payload->type.Video.height = 0;
|
| + parsed_payload->type.Video.codec = kRtpVideoH264;
|
| + parsed_payload->type.Video.isFirstPacket = true;
|
| + RTPVideoHeaderH264* h264_header =
|
| + &parsed_payload->type.Video.codecHeader.H264;
|
| +
|
| + const uint8_t* nalu_start = payload_data + kNalHeaderSize;
|
| + const size_t nalu_length = length_ - kNalHeaderSize;
|
| + uint8_t nal_type = payload_data[0] & kTypeMask;
|
| + std::vector<size_t> nalu_start_offsets;
|
| + if (nal_type == H264::NaluType::kStapA) {
|
| + // Skip the StapA header (StapA NAL type + length).
|
| + if (length_ <= kStapAHeaderSize) {
|
| + LOG(LS_ERROR) << "StapA header truncated.";
|
| return false;
|
| + }
|
| +
|
| + if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets)) {
|
| + LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
|
| + return false;
|
| + }
|
| +
|
| + h264_header->packetization_type = kH264StapA;
|
| + nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
|
| + } else {
|
| + h264_header->packetization_type = kH264SingleNalu;
|
| + nalu_start_offsets.push_back(0);
|
| + }
|
| + h264_header->nalu_type = nal_type;
|
| + parsed_payload->frame_type = kVideoFrameDelta;
|
| +
|
| + nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset.
|
| + for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) {
|
| + size_t start_offset = nalu_start_offsets[i];
|
| + // End offset is actually start offset for next unit, excluding length field
|
| + // so remove that from this units length.
|
| + size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize;
|
| + nal_type = payload_data[start_offset] & kTypeMask;
|
| + start_offset += H264::kNaluTypeSize;
|
| +
|
| + if (nal_type == H264::NaluType::kSps) {
|
| + // Check if VUI is present in SPS and if it needs to be modified to avoid
|
| + // excessive decoder latency.
|
| +
|
| + // Copy any previous data first (likely just the first header).
|
| + std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer());
|
| + if (start_offset)
|
| + output_buffer->AppendData(payload_data, start_offset);
|
| +
|
| + // RBSP decode of payload data.
|
| + std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp(
|
| + &payload_data[start_offset], end_offset - start_offset);
|
| + rtc::Optional<SpsParser::SpsState> sps;
|
| +
|
| + SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps(
|
| + rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get());
|
| + switch (result) {
|
| + case SpsVuiRewriter::ParseResult::kVuiRewritten:
|
| + if (modified_buffer_) {
|
| + LOG(LS_WARNING) << "More than one H264 SPS NAL units needing "
|
| + "rewriting found within a single STAP-A packet. "
|
| + "Keeping the first and rewriting the last.";
|
| + }
|
| +
|
| + // Rewrite length field to new SPS size.
|
| + if (h264_header->packetization_type == kH264StapA) {
|
| + size_t length_field_offset =
|
| + start_offset - (H264::kNaluTypeSize + kLengthFieldSize);
|
| + // Stap-A Length includes payload data and type header.
|
| + size_t rewritten_size =
|
| + output_buffer->size() - start_offset + H264::kNaluTypeSize;
|
| + ByteWriter<uint16_t>::WriteBigEndian(
|
| + &(*output_buffer)[length_field_offset], rewritten_size);
|
| + }
|
| +
|
| + // Append rest of packet.
|
| + output_buffer->AppendData(&payload_data[end_offset],
|
| + nalu_length + kNalHeaderSize - end_offset);
|
| +
|
| + modified_buffer_ = std::move(output_buffer);
|
| + length_ = modified_buffer_->size();
|
| +
|
| + RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
|
| + SpsValidEvent::kReceivedSpsRewritten,
|
| + SpsValidEvent::kSpsRewrittenMax);
|
| + break;
|
| + case SpsVuiRewriter::ParseResult::kPocOk:
|
| + RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
|
| + SpsValidEvent::kReceivedSpsPocOk,
|
| + SpsValidEvent::kSpsRewrittenMax);
|
| + break;
|
| + case SpsVuiRewriter::ParseResult::kVuiOk:
|
| + RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
|
| + SpsValidEvent::kReceivedSpsVuiOk,
|
| + SpsValidEvent::kSpsRewrittenMax);
|
| + break;
|
| + case SpsVuiRewriter::ParseResult::kFailure:
|
| + RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName,
|
| + SpsValidEvent::kReceivedSpsParseFailure,
|
| + SpsValidEvent::kSpsRewrittenMax);
|
| + break;
|
| + }
|
| +
|
| + if (sps) {
|
| + parsed_payload->type.Video.width = sps->width;
|
| + parsed_payload->type.Video.height = sps->height;
|
| + }
|
| + parsed_payload->frame_type = kVideoFrameKey;
|
| + } else if (nal_type == H264::NaluType::kPps ||
|
| + nal_type == H264::NaluType::kSei ||
|
| + nal_type == H264::NaluType::kIdr) {
|
| + parsed_payload->frame_type = kVideoFrameKey;
|
| + }
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool RtpDepacketizerH264::ParseFuaNalu(
|
| + RtpDepacketizer::ParsedPayload* parsed_payload,
|
| + const uint8_t* payload_data) {
|
| + if (length_ < kFuAHeaderSize) {
|
| + LOG(LS_ERROR) << "FU-A NAL units truncated.";
|
| + return false;
|
| + }
|
| + uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
|
| + uint8_t original_nal_type = payload_data[1] & kTypeMask;
|
| + bool first_fragment = (payload_data[1] & kSBit) > 0;
|
| +
|
| + if (first_fragment) {
|
| + offset_ = 0;
|
| + length_ -= kNalHeaderSize;
|
| + uint8_t original_nal_header = fnri | original_nal_type;
|
| + modified_buffer_.reset(new rtc::Buffer());
|
| + modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_);
|
| + (*modified_buffer_)[0] = original_nal_header;
|
| + } else {
|
| + offset_ = kFuAHeaderSize;
|
| + length_ -= kFuAHeaderSize;
|
| }
|
|
|
| - parsed_payload->payload = payload_data + offset;
|
| - parsed_payload->payload_length = payload_data_length - offset;
|
| + if (original_nal_type == H264::NaluType::kIdr) {
|
| + parsed_payload->frame_type = kVideoFrameKey;
|
| + } else {
|
| + parsed_payload->frame_type = kVideoFrameDelta;
|
| + }
|
| + parsed_payload->type.Video.width = 0;
|
| + parsed_payload->type.Video.height = 0;
|
| + parsed_payload->type.Video.codec = kRtpVideoH264;
|
| + parsed_payload->type.Video.isFirstPacket = first_fragment;
|
| + RTPVideoHeaderH264* h264_header =
|
| + &parsed_payload->type.Video.codecHeader.H264;
|
| + h264_header->packetization_type = kH264FuA;
|
| + h264_header->nalu_type = original_nal_type;
|
| return true;
|
| }
|
| +
|
| } // namespace webrtc
|
|
|