OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
| 11 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" |
| 12 |
11 #include <string.h> | 13 #include <string.h> |
12 | 14 #include <vector> |
| 15 |
| 16 #include "webrtc/base/checks.h" |
13 #include "webrtc/base/logging.h" | 17 #include "webrtc/base/logging.h" |
14 #include "webrtc/modules/include/module_common_types.h" | 18 #include "webrtc/modules/include/module_common_types.h" |
15 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" | 19 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" |
16 #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" | 20 #include "webrtc/common_video/h264/sps_vui_rewriter.h" |
17 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" | 21 #include "webrtc/common_video/h264/h264_common.h" |
| 22 #include "webrtc/common_video/h264/sps_parser.h" |
| 23 #include "webrtc/system_wrappers/include/metrics.h" |
18 | 24 |
19 namespace webrtc { | 25 namespace webrtc { |
20 namespace { | 26 namespace { |
21 | 27 |
22 enum Nalu { | |
23 kSlice = 1, | |
24 kIdr = 5, | |
25 kSei = 6, | |
26 kSps = 7, | |
27 kPps = 8, | |
28 kStapA = 24, | |
29 kFuA = 28 | |
30 }; | |
31 | |
32 static const size_t kNalHeaderSize = 1; | 28 static const size_t kNalHeaderSize = 1; |
33 static const size_t kFuAHeaderSize = 2; | 29 static const size_t kFuAHeaderSize = 2; |
34 static const size_t kLengthFieldSize = 2; | 30 static const size_t kLengthFieldSize = 2; |
35 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; | 31 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; |
36 | 32 |
| 33 static const char* kSpsValidHistogramName = "WebRTC.Video.H264.SpsValid"; |
| 34 enum SpsValidEvent { |
| 35 kReceivedSpsPocOk = 0, |
| 36 kReceivedSpsVuiOk = 1, |
| 37 kReceivedSpsRewritten = 2, |
| 38 kReceivedSpsParseFailure = 3, |
| 39 kSentSpsPocOk = 4, |
| 40 kSentSpsVuiOk = 5, |
| 41 kSentSpsRewritten = 6, |
| 42 kSentSpsParseFailure = 7, |
| 43 kSpsRewrittenMax = 8 |
| 44 }; |
| 45 |
37 // Bit masks for FU (A and B) indicators. | 46 // Bit masks for FU (A and B) indicators. |
38 enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; | 47 enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; |
39 | 48 |
40 // Bit masks for FU (A and B) headers. | 49 // Bit masks for FU (A and B) headers. |
41 enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; | 50 enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; |
42 | 51 |
43 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. | 52 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. |
44 bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) { | 53 bool ParseStapAStartOffsets(const uint8_t* nalu_ptr, |
| 54 size_t length_remaining, |
| 55 std::vector<size_t>* offsets) { |
| 56 size_t offset = 0; |
45 while (length_remaining > 0) { | 57 while (length_remaining > 0) { |
46 // Buffer doesn't contain room for additional nalu length. | 58 // Buffer doesn't contain room for additional nalu length. |
47 if (length_remaining < sizeof(uint16_t)) | 59 if (length_remaining < sizeof(uint16_t)) |
48 return false; | 60 return false; |
49 uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1]; | 61 uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr); |
50 nalu_ptr += sizeof(uint16_t); | 62 nalu_ptr += sizeof(uint16_t); |
51 length_remaining -= sizeof(uint16_t); | 63 length_remaining -= sizeof(uint16_t); |
52 if (nalu_size > length_remaining) | 64 if (nalu_size > length_remaining) |
53 return false; | 65 return false; |
54 nalu_ptr += nalu_size; | 66 nalu_ptr += nalu_size; |
55 length_remaining -= nalu_size; | 67 length_remaining -= nalu_size; |
| 68 |
| 69 offsets->push_back(offset + kStapAHeaderSize); |
| 70 offset += kLengthFieldSize + nalu_size; |
56 } | 71 } |
57 return true; | 72 return true; |
58 } | 73 } |
59 | 74 |
60 bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload, | |
61 const uint8_t* payload_data, | |
62 size_t payload_data_length) { | |
63 parsed_payload->type.Video.width = 0; | |
64 parsed_payload->type.Video.height = 0; | |
65 parsed_payload->type.Video.codec = kRtpVideoH264; | |
66 parsed_payload->type.Video.isFirstPacket = true; | |
67 RTPVideoHeaderH264* h264_header = | |
68 &parsed_payload->type.Video.codecHeader.H264; | |
69 | |
70 const uint8_t* nalu_start = payload_data + kNalHeaderSize; | |
71 size_t nalu_length = payload_data_length - kNalHeaderSize; | |
72 uint8_t nal_type = payload_data[0] & kTypeMask; | |
73 if (nal_type == kStapA) { | |
74 // Skip the StapA header (StapA nal type + length). | |
75 if (payload_data_length <= kStapAHeaderSize) { | |
76 LOG(LS_ERROR) << "StapA header truncated."; | |
77 return false; | |
78 } | |
79 if (!VerifyStapANaluLengths(nalu_start, nalu_length)) { | |
80 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; | |
81 return false; | |
82 } | |
83 | |
84 nal_type = payload_data[kStapAHeaderSize] & kTypeMask; | |
85 nalu_start += kStapAHeaderSize; | |
86 nalu_length -= kStapAHeaderSize; | |
87 h264_header->packetization_type = kH264StapA; | |
88 } else { | |
89 h264_header->packetization_type = kH264SingleNalu; | |
90 } | |
91 h264_header->nalu_type = nal_type; | |
92 | |
93 // We can read resolution out of sps packets. | |
94 if (nal_type == kSps) { | |
95 H264SpsParser parser(nalu_start, nalu_length); | |
96 if (parser.Parse()) { | |
97 parsed_payload->type.Video.width = parser.width(); | |
98 parsed_payload->type.Video.height = parser.height(); | |
99 } | |
100 } | |
101 switch (nal_type) { | |
102 case kSps: | |
103 case kPps: | |
104 case kSei: | |
105 case kIdr: | |
106 parsed_payload->frame_type = kVideoFrameKey; | |
107 break; | |
108 default: | |
109 parsed_payload->frame_type = kVideoFrameDelta; | |
110 break; | |
111 } | |
112 return true; | |
113 } | |
114 | |
115 bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload, | |
116 const uint8_t* payload_data, | |
117 size_t payload_data_length, | |
118 size_t* offset) { | |
119 if (payload_data_length < kFuAHeaderSize) { | |
120 LOG(LS_ERROR) << "FU-A NAL units truncated."; | |
121 return false; | |
122 } | |
123 uint8_t fnri = payload_data[0] & (kFBit | kNriMask); | |
124 uint8_t original_nal_type = payload_data[1] & kTypeMask; | |
125 bool first_fragment = (payload_data[1] & kSBit) > 0; | |
126 | |
127 uint8_t original_nal_header = fnri | original_nal_type; | |
128 if (first_fragment) { | |
129 *offset = kNalHeaderSize; | |
130 uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset); | |
131 payload[0] = original_nal_header; | |
132 } else { | |
133 *offset = kFuAHeaderSize; | |
134 } | |
135 | |
136 if (original_nal_type == kIdr) { | |
137 parsed_payload->frame_type = kVideoFrameKey; | |
138 } else { | |
139 parsed_payload->frame_type = kVideoFrameDelta; | |
140 } | |
141 parsed_payload->type.Video.width = 0; | |
142 parsed_payload->type.Video.height = 0; | |
143 parsed_payload->type.Video.codec = kRtpVideoH264; | |
144 parsed_payload->type.Video.isFirstPacket = first_fragment; | |
145 RTPVideoHeaderH264* h264_header = | |
146 &parsed_payload->type.Video.codecHeader.H264; | |
147 h264_header->packetization_type = kH264FuA; | |
148 h264_header->nalu_type = original_nal_type; | |
149 return true; | |
150 } | |
151 } // namespace | 75 } // namespace |
152 | 76 |
153 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, | 77 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, |
154 size_t max_payload_len) | 78 size_t max_payload_len) |
155 : payload_data_(NULL), | 79 : max_payload_len_(max_payload_len) {} |
156 payload_size_(0), | |
157 max_payload_len_(max_payload_len) { | |
158 } | |
159 | 80 |
160 RtpPacketizerH264::~RtpPacketizerH264() { | 81 RtpPacketizerH264::~RtpPacketizerH264() { |
161 } | 82 } |
162 | 83 |
| 84 RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length) |
| 85 : buffer(buffer), length(length) {} |
| 86 RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment) |
| 87 : buffer(fragment.buffer), length(fragment.length) {} |
| 88 |
163 void RtpPacketizerH264::SetPayloadData( | 89 void RtpPacketizerH264::SetPayloadData( |
164 const uint8_t* payload_data, | 90 const uint8_t* payload_data, |
165 size_t payload_size, | 91 size_t payload_size, |
166 const RTPFragmentationHeader* fragmentation) { | 92 const RTPFragmentationHeader* fragmentation) { |
167 assert(packets_.empty()); | 93 RTC_DCHECK(packets_.empty()); |
168 assert(fragmentation); | 94 RTC_DCHECK(input_fragments_.empty()); |
169 payload_data_ = payload_data; | 95 RTC_DCHECK(fragmentation); |
170 payload_size_ = payload_size; | 96 for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) { |
171 fragmentation_.CopyFrom(*fragmentation); | 97 const uint8_t* buffer = |
| 98 &payload_data[fragmentation->fragmentationOffset[i]]; |
| 99 size_t length = fragmentation->fragmentationLength[i]; |
| 100 |
| 101 bool updated_sps = false; |
| 102 H264::NaluType nalu_type = H264::ParseNaluType(buffer[0]); |
| 103 if (nalu_type == H264::NaluType::kSps) { |
| 104 // Check if stream uses picture order count type 0, and if so rewrite it |
| 105 // to enable faster decoding. Streams in that format incur additional |
| 106 // delay because it allows decode order to differ from render order. |
| 107 // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain |
| 108 // restrictions on the maximum number of reordered pictures. This reduces |
| 109 // latency significantly, though it still adds about a frame of latency to |
| 110 // decoding. |
| 111 // Note that we do this rewriting both here (send side, in order to |
| 112 // protect legacy receive clients) and below in |
| 113 // RtpDepacketizerH264::ParseSingleNalu (receive side, in orderer to |
| 114 // protect us from unknown or legacy send clients). |
| 115 |
| 116 // Create temporary RBSP decoded buffer of the payload (exlcuding the |
| 117 // leading nalu type header byte (the SpsParser uses only the payload). |
| 118 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp( |
| 119 buffer + H264::kNaluTypeSize, length - H264::kNaluTypeSize); |
| 120 rtc::Optional<SpsParser::SpsState> sps; |
| 121 |
| 122 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); |
| 123 // Add the type header to the output buffer first, so that the rewriter |
| 124 // can append modified payload on top of that. |
| 125 output_buffer->AppendData(buffer[0]); |
| 126 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( |
| 127 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); |
| 128 |
| 129 switch (result) { |
| 130 case SpsVuiRewriter::ParseResult::kVuiRewritten: |
| 131 input_fragments_.push_back( |
| 132 Fragment(output_buffer->data(), output_buffer->size())); |
| 133 input_fragments_.rbegin()->tmp_buffer = std::move(output_buffer); |
| 134 updated_sps = true; |
| 135 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 136 SpsValidEvent::kSentSpsRewritten, |
| 137 SpsValidEvent::kSpsRewrittenMax); |
| 138 break; |
| 139 case SpsVuiRewriter::ParseResult::kPocOk: |
| 140 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 141 SpsValidEvent::kSentSpsPocOk, |
| 142 SpsValidEvent::kSpsRewrittenMax); |
| 143 break; |
| 144 case SpsVuiRewriter::ParseResult::kVuiOk: |
| 145 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 146 SpsValidEvent::kSentSpsVuiOk, |
| 147 SpsValidEvent::kSpsRewrittenMax); |
| 148 break; |
| 149 case SpsVuiRewriter::ParseResult::kFailure: |
| 150 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 151 SpsValidEvent::kSentSpsParseFailure, |
| 152 SpsValidEvent::kSpsRewrittenMax); |
| 153 break; |
| 154 } |
| 155 } |
| 156 |
| 157 if (!updated_sps) |
| 158 input_fragments_.push_back(Fragment(buffer, length)); |
| 159 } |
172 GeneratePackets(); | 160 GeneratePackets(); |
173 } | 161 } |
174 | 162 |
175 void RtpPacketizerH264::GeneratePackets() { | 163 void RtpPacketizerH264::GeneratePackets() { |
176 for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) { | 164 for (size_t i = 0; i < input_fragments_.size();) { |
177 size_t fragment_offset = fragmentation_.fragmentationOffset[i]; | 165 if (input_fragments_[i].length > max_payload_len_) { |
178 size_t fragment_length = fragmentation_.fragmentationLength[i]; | 166 PacketizeFuA(i); |
179 if (fragment_length > max_payload_len_) { | |
180 PacketizeFuA(fragment_offset, fragment_length); | |
181 ++i; | 167 ++i; |
182 } else { | 168 } else { |
183 i = PacketizeStapA(i, fragment_offset, fragment_length); | 169 i = PacketizeStapA(i); |
184 } | 170 } |
185 } | 171 } |
186 } | 172 } |
187 | 173 |
188 void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset, | 174 void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) { |
189 size_t fragment_length) { | |
190 // Fragment payload into packets (FU-A). | 175 // Fragment payload into packets (FU-A). |
191 // Strip out the original header and leave room for the FU-A header. | 176 // Strip out the original header and leave room for the FU-A header. |
192 fragment_length -= kNalHeaderSize; | 177 const Fragment& fragment = input_fragments_[fragment_index]; |
193 size_t offset = fragment_offset + kNalHeaderSize; | 178 |
| 179 size_t fragment_length = fragment.length - kNalHeaderSize; |
| 180 size_t offset = kNalHeaderSize; |
194 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; | 181 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; |
195 size_t fragments = | 182 const size_t num_fragments = |
196 (fragment_length + (bytes_available - 1)) / bytes_available; | 183 (fragment_length + (bytes_available - 1)) / bytes_available; |
197 size_t avg_size = (fragment_length + fragments - 1) / fragments; | 184 |
| 185 const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments; |
198 while (fragment_length > 0) { | 186 while (fragment_length > 0) { |
199 size_t packet_length = avg_size; | 187 size_t packet_length = avg_size; |
200 if (fragment_length < avg_size) | 188 if (fragment_length < avg_size) |
201 packet_length = fragment_length; | 189 packet_length = fragment_length; |
202 uint8_t header = payload_data_[fragment_offset]; | 190 packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length), |
203 packets_.push(Packet(offset, | 191 offset - kNalHeaderSize == 0, |
204 packet_length, | 192 fragment_length == packet_length, false, |
205 offset - kNalHeaderSize == fragment_offset, | 193 fragment.buffer[0])); |
206 fragment_length == packet_length, | |
207 false, | |
208 header)); | |
209 offset += packet_length; | 194 offset += packet_length; |
210 fragment_length -= packet_length; | 195 fragment_length -= packet_length; |
211 } | 196 } |
212 } | 197 RTC_CHECK_EQ(0u, fragment_length); |
213 | 198 } |
214 int RtpPacketizerH264::PacketizeStapA(size_t fragment_index, | 199 |
215 size_t fragment_offset, | 200 size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) { |
216 size_t fragment_length) { | |
217 // Aggregate fragments into one packet (STAP-A). | 201 // Aggregate fragments into one packet (STAP-A). |
218 size_t payload_size_left = max_payload_len_; | 202 size_t payload_size_left = max_payload_len_; |
219 int aggregated_fragments = 0; | 203 int aggregated_fragments = 0; |
220 size_t fragment_headers_length = 0; | 204 size_t fragment_headers_length = 0; |
221 assert(payload_size_left >= fragment_length); | 205 const Fragment* fragment = &input_fragments_[fragment_index]; |
222 while (payload_size_left >= fragment_length + fragment_headers_length) { | 206 RTC_CHECK_GE(payload_size_left, fragment->length); |
223 assert(fragment_length > 0); | 207 while (payload_size_left >= fragment->length + fragment_headers_length) { |
224 uint8_t header = payload_data_[fragment_offset]; | 208 RTC_CHECK_GT(fragment->length, 0u); |
225 packets_.push(Packet(fragment_offset, | 209 packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true, |
226 fragment_length, | 210 fragment->buffer[0])); |
227 aggregated_fragments == 0, | 211 payload_size_left -= fragment->length; |
228 false, | |
229 true, | |
230 header)); | |
231 payload_size_left -= fragment_length; | |
232 payload_size_left -= fragment_headers_length; | 212 payload_size_left -= fragment_headers_length; |
233 | 213 |
234 // Next fragment. | 214 // Next fragment. |
235 ++fragment_index; | 215 ++fragment_index; |
236 if (fragment_index == fragmentation_.fragmentationVectorSize) | 216 if (fragment_index == input_fragments_.size()) |
237 break; | 217 break; |
238 fragment_offset = fragmentation_.fragmentationOffset[fragment_index]; | 218 fragment = &input_fragments_[fragment_index]; |
239 fragment_length = fragmentation_.fragmentationLength[fragment_index]; | |
240 | 219 |
241 fragment_headers_length = kLengthFieldSize; | 220 fragment_headers_length = kLengthFieldSize; |
242 // If we are going to try to aggregate more fragments into this packet | 221 // If we are going to try to aggregate more fragments into this packet |
243 // we need to add the STAP-A NALU header and a length field for the first | 222 // we need to add the STAP-A NALU header and a length field for the first |
244 // NALU of this packet. | 223 // NALU of this packet. |
245 if (aggregated_fragments == 0) | 224 if (aggregated_fragments == 0) |
246 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; | 225 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; |
247 ++aggregated_fragments; | 226 ++aggregated_fragments; |
248 } | 227 } |
249 packets_.back().last_fragment = true; | 228 packets_.back().last_fragment = true; |
250 return fragment_index; | 229 return fragment_index; |
251 } | 230 } |
252 | 231 |
253 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, | 232 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, |
254 size_t* bytes_to_send, | 233 size_t* bytes_to_send, |
255 bool* last_packet) { | 234 bool* last_packet) { |
256 *bytes_to_send = 0; | 235 *bytes_to_send = 0; |
257 if (packets_.empty()) { | 236 if (packets_.empty()) { |
258 *bytes_to_send = 0; | 237 *bytes_to_send = 0; |
259 *last_packet = true; | 238 *last_packet = true; |
260 return false; | 239 return false; |
261 } | 240 } |
262 | 241 |
263 Packet packet = packets_.front(); | 242 PacketUnit packet = packets_.front(); |
264 | 243 |
265 if (packet.first_fragment && packet.last_fragment) { | 244 if (packet.first_fragment && packet.last_fragment) { |
266 // Single NAL unit packet. | 245 // Single NAL unit packet. |
267 *bytes_to_send = packet.size; | 246 *bytes_to_send = packet.source_fragment.length; |
268 memcpy(buffer, &payload_data_[packet.offset], packet.size); | 247 memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send); |
269 packets_.pop(); | 248 packets_.pop(); |
270 assert(*bytes_to_send <= max_payload_len_); | 249 input_fragments_.pop_front(); |
| 250 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
271 } else if (packet.aggregated) { | 251 } else if (packet.aggregated) { |
272 NextAggregatePacket(buffer, bytes_to_send); | 252 NextAggregatePacket(buffer, bytes_to_send); |
273 assert(*bytes_to_send <= max_payload_len_); | 253 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
274 } else { | 254 } else { |
275 NextFragmentPacket(buffer, bytes_to_send); | 255 NextFragmentPacket(buffer, bytes_to_send); |
276 assert(*bytes_to_send <= max_payload_len_); | 256 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
277 } | 257 } |
278 *last_packet = packets_.empty(); | 258 *last_packet = packets_.empty(); |
279 return true; | 259 return true; |
280 } | 260 } |
281 | 261 |
282 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, | 262 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, |
283 size_t* bytes_to_send) { | 263 size_t* bytes_to_send) { |
284 Packet packet = packets_.front(); | 264 PacketUnit* packet = &packets_.front(); |
285 assert(packet.first_fragment); | 265 RTC_CHECK(packet->first_fragment); |
286 // STAP-A NALU header. | 266 // STAP-A NALU header. |
287 buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA; | 267 buffer[0] = (packet->header & (kFBit | kNriMask)) | H264::NaluType::kStapA; |
288 int index = kNalHeaderSize; | 268 int index = kNalHeaderSize; |
289 *bytes_to_send += kNalHeaderSize; | 269 *bytes_to_send += kNalHeaderSize; |
290 while (packet.aggregated) { | 270 while (packet->aggregated) { |
| 271 const Fragment& fragment = packet->source_fragment; |
291 // Add NAL unit length field. | 272 // Add NAL unit length field. |
292 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size); | 273 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length); |
293 index += kLengthFieldSize; | 274 index += kLengthFieldSize; |
294 *bytes_to_send += kLengthFieldSize; | 275 *bytes_to_send += kLengthFieldSize; |
295 // Add NAL unit. | 276 // Add NAL unit. |
296 memcpy(&buffer[index], &payload_data_[packet.offset], packet.size); | 277 memcpy(&buffer[index], fragment.buffer, fragment.length); |
297 index += packet.size; | 278 index += fragment.length; |
298 *bytes_to_send += packet.size; | 279 *bytes_to_send += fragment.length; |
299 packets_.pop(); | 280 packets_.pop(); |
300 if (packet.last_fragment) | 281 input_fragments_.pop_front(); |
| 282 if (packet->last_fragment) |
301 break; | 283 break; |
302 packet = packets_.front(); | 284 packet = &packets_.front(); |
303 } | 285 } |
304 assert(packet.last_fragment); | 286 RTC_CHECK(packet->last_fragment); |
305 } | 287 } |
306 | 288 |
307 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, | 289 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, |
308 size_t* bytes_to_send) { | 290 size_t* bytes_to_send) { |
309 Packet packet = packets_.front(); | 291 PacketUnit* packet = &packets_.front(); |
310 // NAL unit fragmented over multiple packets (FU-A). | 292 // NAL unit fragmented over multiple packets (FU-A). |
311 // We do not send original NALU header, so it will be replaced by the | 293 // We do not send original NALU header, so it will be replaced by the |
312 // FU indicator header of the first packet. | 294 // FU indicator header of the first packet. |
313 uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA; | 295 uint8_t fu_indicator = |
| 296 (packet->header & (kFBit | kNriMask)) | H264::NaluType::kFuA; |
314 uint8_t fu_header = 0; | 297 uint8_t fu_header = 0; |
315 | 298 |
316 // S | E | R | 5 bit type. | 299 // S | E | R | 5 bit type. |
317 fu_header |= (packet.first_fragment ? kSBit : 0); | 300 fu_header |= (packet->first_fragment ? kSBit : 0); |
318 fu_header |= (packet.last_fragment ? kEBit : 0); | 301 fu_header |= (packet->last_fragment ? kEBit : 0); |
319 uint8_t type = packet.header & kTypeMask; | 302 uint8_t type = packet->header & kTypeMask; |
320 fu_header |= type; | 303 fu_header |= type; |
321 buffer[0] = fu_indicator; | 304 buffer[0] = fu_indicator; |
322 buffer[1] = fu_header; | 305 buffer[1] = fu_header; |
323 | 306 |
324 if (packet.last_fragment) { | 307 const Fragment& fragment = packet->source_fragment; |
325 *bytes_to_send = packet.size + kFuAHeaderSize; | 308 *bytes_to_send = fragment.length + kFuAHeaderSize; |
326 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); | 309 memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length); |
327 } else { | 310 if (packet->last_fragment) |
328 *bytes_to_send = packet.size + kFuAHeaderSize; | 311 input_fragments_.pop_front(); |
329 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); | |
330 } | |
331 packets_.pop(); | 312 packets_.pop(); |
332 } | 313 } |
333 | 314 |
334 ProtectionType RtpPacketizerH264::GetProtectionType() { | 315 ProtectionType RtpPacketizerH264::GetProtectionType() { |
335 return kProtectedPacket; | 316 return kProtectedPacket; |
336 } | 317 } |
337 | 318 |
338 StorageType RtpPacketizerH264::GetStorageType( | 319 StorageType RtpPacketizerH264::GetStorageType( |
339 uint32_t retransmission_settings) { | 320 uint32_t retransmission_settings) { |
340 return kAllowRetransmission; | 321 return kAllowRetransmission; |
341 } | 322 } |
342 | 323 |
343 std::string RtpPacketizerH264::ToString() { | 324 std::string RtpPacketizerH264::ToString() { |
344 return "RtpPacketizerH264"; | 325 return "RtpPacketizerH264"; |
345 } | 326 } |
346 | 327 |
| 328 RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {} |
| 329 RtpDepacketizerH264::~RtpDepacketizerH264() {} |
| 330 |
347 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, | 331 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, |
348 const uint8_t* payload_data, | 332 const uint8_t* payload_data, |
349 size_t payload_data_length) { | 333 size_t payload_data_length) { |
350 assert(parsed_payload != NULL); | 334 RTC_CHECK(parsed_payload != nullptr); |
351 if (payload_data_length == 0) { | 335 if (payload_data_length == 0) { |
352 LOG(LS_ERROR) << "Empty payload."; | 336 LOG(LS_ERROR) << "Empty payload."; |
353 return false; | 337 return false; |
354 } | 338 } |
355 | 339 |
| 340 offset_ = 0; |
| 341 length_ = payload_data_length; |
| 342 modified_buffer_.reset(); |
| 343 |
356 uint8_t nal_type = payload_data[0] & kTypeMask; | 344 uint8_t nal_type = payload_data[0] & kTypeMask; |
357 size_t offset = 0; | 345 if (nal_type == H264::NaluType::kFuA) { |
358 if (nal_type == kFuA) { | |
359 // Fragmented NAL units (FU-A). | 346 // Fragmented NAL units (FU-A). |
360 if (!ParseFuaNalu( | 347 if (!ParseFuaNalu(parsed_payload, payload_data)) |
361 parsed_payload, payload_data, payload_data_length, &offset)) { | 348 return false; |
362 return false; | |
363 } | |
364 } else { | 349 } else { |
365 // We handle STAP-A and single NALU's the same way here. The jitter buffer | 350 // We handle STAP-A and single NALU's the same way here. The jitter buffer |
366 // will depacketize the STAP-A into NAL units later. | 351 // will depacketize the STAP-A into NAL units later. |
367 if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length)) | 352 // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec. |
368 return false; | 353 if (!ProcessStapAOrSingleNalu(parsed_payload, payload_data)) |
369 } | 354 return false; |
370 | 355 } |
371 parsed_payload->payload = payload_data + offset; | 356 |
372 parsed_payload->payload_length = payload_data_length - offset; | 357 const uint8_t* payload = |
| 358 modified_buffer_ ? modified_buffer_->data() : payload_data; |
| 359 |
| 360 parsed_payload->payload = payload + offset_; |
| 361 parsed_payload->payload_length = length_; |
373 return true; | 362 return true; |
374 } | 363 } |
| 364 |
| 365 bool RtpDepacketizerH264::ProcessStapAOrSingleNalu( |
| 366 ParsedPayload* parsed_payload, |
| 367 const uint8_t* payload_data) { |
| 368 parsed_payload->type.Video.width = 0; |
| 369 parsed_payload->type.Video.height = 0; |
| 370 parsed_payload->type.Video.codec = kRtpVideoH264; |
| 371 parsed_payload->type.Video.isFirstPacket = true; |
| 372 RTPVideoHeaderH264* h264_header = |
| 373 &parsed_payload->type.Video.codecHeader.H264; |
| 374 |
| 375 const uint8_t* nalu_start = payload_data + kNalHeaderSize; |
| 376 const size_t nalu_length = length_ - kNalHeaderSize; |
| 377 uint8_t nal_type = payload_data[0] & kTypeMask; |
| 378 std::vector<size_t> nalu_start_offsets; |
| 379 if (nal_type == H264::NaluType::kStapA) { |
| 380 // Skip the StapA header (StapA NAL type + length). |
| 381 if (length_ <= kStapAHeaderSize) { |
| 382 LOG(LS_ERROR) << "StapA header truncated."; |
| 383 return false; |
| 384 } |
| 385 |
| 386 if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets)) { |
| 387 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; |
| 388 return false; |
| 389 } |
| 390 |
| 391 h264_header->packetization_type = kH264StapA; |
| 392 nal_type = payload_data[kStapAHeaderSize] & kTypeMask; |
| 393 } else { |
| 394 h264_header->packetization_type = kH264SingleNalu; |
| 395 nalu_start_offsets.push_back(0); |
| 396 } |
| 397 h264_header->nalu_type = nal_type; |
| 398 parsed_payload->frame_type = kVideoFrameDelta; |
| 399 |
| 400 nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset. |
| 401 for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) { |
| 402 size_t start_offset = nalu_start_offsets[i]; |
| 403 // End offset is actually start offset for next unit, excluding length field |
| 404 // so remove that from this units length. |
| 405 size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize; |
| 406 nal_type = payload_data[start_offset] & kTypeMask; |
| 407 start_offset += H264::kNaluTypeSize; |
| 408 |
| 409 if (nal_type == H264::NaluType::kSps) { |
| 410 // Check if VUI is present in SPS and if it needs to be modified to avoid |
| 411 // excessive decoder latency. |
| 412 |
| 413 // Copy any previous data first (likely just the first header). |
| 414 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); |
| 415 if (start_offset) |
| 416 output_buffer->AppendData(payload_data, start_offset); |
| 417 |
| 418 // RBSP decode of payload data. |
| 419 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp( |
| 420 &payload_data[start_offset], end_offset - start_offset); |
| 421 rtc::Optional<SpsParser::SpsState> sps; |
| 422 |
| 423 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( |
| 424 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); |
| 425 switch (result) { |
| 426 case SpsVuiRewriter::ParseResult::kVuiRewritten: |
| 427 if (modified_buffer_) { |
| 428 LOG(LS_WARNING) << "More than one H264 SPS NAL units needing " |
| 429 "rewriting found within a single STAP-A packet. " |
| 430 "Keeping the first and rewriting the last."; |
| 431 } |
| 432 |
| 433 // Rewrite length field to new SPS size. |
| 434 if (h264_header->packetization_type == kH264StapA) { |
| 435 size_t length_field_offset = |
| 436 start_offset - (H264::kNaluTypeSize + kLengthFieldSize); |
| 437 // Stap-A Length includes payload data and type header. |
| 438 size_t rewritten_size = |
| 439 output_buffer->size() - start_offset + H264::kNaluTypeSize; |
| 440 ByteWriter<uint16_t>::WriteBigEndian( |
| 441 &(*output_buffer)[length_field_offset], rewritten_size); |
| 442 } |
| 443 |
| 444 // Append rest of packet. |
| 445 output_buffer->AppendData(&payload_data[end_offset], |
| 446 nalu_length + kNalHeaderSize - end_offset); |
| 447 |
| 448 modified_buffer_ = std::move(output_buffer); |
| 449 length_ = modified_buffer_->size(); |
| 450 |
| 451 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 452 SpsValidEvent::kReceivedSpsRewritten, |
| 453 SpsValidEvent::kSpsRewrittenMax); |
| 454 break; |
| 455 case SpsVuiRewriter::ParseResult::kPocOk: |
| 456 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 457 SpsValidEvent::kReceivedSpsPocOk, |
| 458 SpsValidEvent::kSpsRewrittenMax); |
| 459 break; |
| 460 case SpsVuiRewriter::ParseResult::kVuiOk: |
| 461 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 462 SpsValidEvent::kReceivedSpsVuiOk, |
| 463 SpsValidEvent::kSpsRewrittenMax); |
| 464 break; |
| 465 case SpsVuiRewriter::ParseResult::kFailure: |
| 466 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 467 SpsValidEvent::kReceivedSpsParseFailure, |
| 468 SpsValidEvent::kSpsRewrittenMax); |
| 469 break; |
| 470 } |
| 471 |
| 472 if (sps) { |
| 473 parsed_payload->type.Video.width = sps->width; |
| 474 parsed_payload->type.Video.height = sps->height; |
| 475 } |
| 476 parsed_payload->frame_type = kVideoFrameKey; |
| 477 } else if (nal_type == H264::NaluType::kPps || |
| 478 nal_type == H264::NaluType::kSei || |
| 479 nal_type == H264::NaluType::kIdr) { |
| 480 parsed_payload->frame_type = kVideoFrameKey; |
| 481 } |
| 482 } |
| 483 |
| 484 return true; |
| 485 } |
| 486 |
| 487 bool RtpDepacketizerH264::ParseFuaNalu( |
| 488 RtpDepacketizer::ParsedPayload* parsed_payload, |
| 489 const uint8_t* payload_data) { |
| 490 if (length_ < kFuAHeaderSize) { |
| 491 LOG(LS_ERROR) << "FU-A NAL units truncated."; |
| 492 return false; |
| 493 } |
| 494 uint8_t fnri = payload_data[0] & (kFBit | kNriMask); |
| 495 uint8_t original_nal_type = payload_data[1] & kTypeMask; |
| 496 bool first_fragment = (payload_data[1] & kSBit) > 0; |
| 497 |
| 498 if (first_fragment) { |
| 499 offset_ = 0; |
| 500 length_ -= kNalHeaderSize; |
| 501 uint8_t original_nal_header = fnri | original_nal_type; |
| 502 modified_buffer_.reset(new rtc::Buffer()); |
| 503 modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_); |
| 504 (*modified_buffer_)[0] = original_nal_header; |
| 505 } else { |
| 506 offset_ = kFuAHeaderSize; |
| 507 length_ -= kFuAHeaderSize; |
| 508 } |
| 509 |
| 510 if (original_nal_type == H264::NaluType::kIdr) { |
| 511 parsed_payload->frame_type = kVideoFrameKey; |
| 512 } else { |
| 513 parsed_payload->frame_type = kVideoFrameDelta; |
| 514 } |
| 515 parsed_payload->type.Video.width = 0; |
| 516 parsed_payload->type.Video.height = 0; |
| 517 parsed_payload->type.Video.codec = kRtpVideoH264; |
| 518 parsed_payload->type.Video.isFirstPacket = first_fragment; |
| 519 RTPVideoHeaderH264* h264_header = |
| 520 &parsed_payload->type.Video.codecHeader.H264; |
| 521 h264_header->packetization_type = kH264FuA; |
| 522 h264_header->nalu_type = original_nal_type; |
| 523 return true; |
| 524 } |
| 525 |
375 } // namespace webrtc | 526 } // namespace webrtc |
OLD | NEW |