| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" |
| 12 |
| 11 #include <string.h> | 13 #include <string.h> |
| 12 | 14 #include <vector> |
| 15 |
| 16 #include "webrtc/base/checks.h" |
| 13 #include "webrtc/base/logging.h" | 17 #include "webrtc/base/logging.h" |
| 14 #include "webrtc/modules/include/module_common_types.h" | 18 #include "webrtc/modules/include/module_common_types.h" |
| 15 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" | 19 #include "webrtc/modules/rtp_rtcp/source/byte_io.h" |
| 16 #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" | 20 #include "webrtc/common_video/h264/sps_vui_rewriter.h" |
| 17 #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" | 21 #include "webrtc/common_video/h264/h264_common.h" |
| 22 #include "webrtc/common_video/h264/sps_parser.h" |
| 23 #include "webrtc/system_wrappers/include/metrics.h" |
| 18 | 24 |
| 19 namespace webrtc { | 25 namespace webrtc { |
| 20 namespace { | 26 namespace { |
| 21 | 27 |
| 22 enum Nalu { | |
| 23 kSlice = 1, | |
| 24 kIdr = 5, | |
| 25 kSei = 6, | |
| 26 kSps = 7, | |
| 27 kPps = 8, | |
| 28 kStapA = 24, | |
| 29 kFuA = 28 | |
| 30 }; | |
| 31 | |
| 32 static const size_t kNalHeaderSize = 1; | 28 static const size_t kNalHeaderSize = 1; |
| 33 static const size_t kFuAHeaderSize = 2; | 29 static const size_t kFuAHeaderSize = 2; |
| 34 static const size_t kLengthFieldSize = 2; | 30 static const size_t kLengthFieldSize = 2; |
| 35 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; | 31 static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; |
| 36 | 32 |
| 33 static const char* kSpsValidHistogramName = "WebRTC.Video.H264.SpsValid"; |
| 34 enum SpsValidEvent { |
| 35 kReceivedSpsPocOk = 0, |
| 36 kReceivedSpsVuiOk = 1, |
| 37 kReceivedSpsRewritten = 2, |
| 38 kReceivedSpsParseFailure = 3, |
| 39 kSentSpsPocOk = 4, |
| 40 kSentSpsVuiOk = 5, |
| 41 kSentSpsRewritten = 6, |
| 42 kSentSpsParseFailure = 7, |
| 43 kSpsRewrittenMax = 8 |
| 44 }; |
| 45 |
| 37 // Bit masks for FU (A and B) indicators. | 46 // Bit masks for FU (A and B) indicators. |
| 38 enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; | 47 enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; |
| 39 | 48 |
| 40 // Bit masks for FU (A and B) headers. | 49 // Bit masks for FU (A and B) headers. |
| 41 enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; | 50 enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; |
| 42 | 51 |
| 43 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. | 52 // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. |
| 44 bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) { | 53 bool ParseStapAStartOffsets(const uint8_t* nalu_ptr, |
| 54 size_t length_remaining, |
| 55 std::vector<size_t>* offsets) { |
| 56 size_t offset = 0; |
| 45 while (length_remaining > 0) { | 57 while (length_remaining > 0) { |
| 46 // Buffer doesn't contain room for additional nalu length. | 58 // Buffer doesn't contain room for additional nalu length. |
| 47 if (length_remaining < sizeof(uint16_t)) | 59 if (length_remaining < sizeof(uint16_t)) |
| 48 return false; | 60 return false; |
| 49 uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1]; | 61 uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr); |
| 50 nalu_ptr += sizeof(uint16_t); | 62 nalu_ptr += sizeof(uint16_t); |
| 51 length_remaining -= sizeof(uint16_t); | 63 length_remaining -= sizeof(uint16_t); |
| 52 if (nalu_size > length_remaining) | 64 if (nalu_size > length_remaining) |
| 53 return false; | 65 return false; |
| 54 nalu_ptr += nalu_size; | 66 nalu_ptr += nalu_size; |
| 55 length_remaining -= nalu_size; | 67 length_remaining -= nalu_size; |
| 68 |
| 69 offsets->push_back(offset + kStapAHeaderSize); |
| 70 offset += kLengthFieldSize + nalu_size; |
| 56 } | 71 } |
| 57 return true; | 72 return true; |
| 58 } | 73 } |
| 59 | 74 |
| 60 bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload, | |
| 61 const uint8_t* payload_data, | |
| 62 size_t payload_data_length) { | |
| 63 parsed_payload->type.Video.width = 0; | |
| 64 parsed_payload->type.Video.height = 0; | |
| 65 parsed_payload->type.Video.codec = kRtpVideoH264; | |
| 66 parsed_payload->type.Video.isFirstPacket = true; | |
| 67 RTPVideoHeaderH264* h264_header = | |
| 68 &parsed_payload->type.Video.codecHeader.H264; | |
| 69 | |
| 70 const uint8_t* nalu_start = payload_data + kNalHeaderSize; | |
| 71 size_t nalu_length = payload_data_length - kNalHeaderSize; | |
| 72 uint8_t nal_type = payload_data[0] & kTypeMask; | |
| 73 if (nal_type == kStapA) { | |
| 74 // Skip the StapA header (StapA nal type + length). | |
| 75 if (payload_data_length <= kStapAHeaderSize) { | |
| 76 LOG(LS_ERROR) << "StapA header truncated."; | |
| 77 return false; | |
| 78 } | |
| 79 if (!VerifyStapANaluLengths(nalu_start, nalu_length)) { | |
| 80 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; | |
| 81 return false; | |
| 82 } | |
| 83 | |
| 84 nal_type = payload_data[kStapAHeaderSize] & kTypeMask; | |
| 85 nalu_start += kStapAHeaderSize; | |
| 86 nalu_length -= kStapAHeaderSize; | |
| 87 h264_header->packetization_type = kH264StapA; | |
| 88 } else { | |
| 89 h264_header->packetization_type = kH264SingleNalu; | |
| 90 } | |
| 91 h264_header->nalu_type = nal_type; | |
| 92 | |
| 93 // We can read resolution out of sps packets. | |
| 94 if (nal_type == kSps) { | |
| 95 H264SpsParser parser(nalu_start, nalu_length); | |
| 96 if (parser.Parse()) { | |
| 97 parsed_payload->type.Video.width = parser.width(); | |
| 98 parsed_payload->type.Video.height = parser.height(); | |
| 99 } | |
| 100 } | |
| 101 switch (nal_type) { | |
| 102 case kSps: | |
| 103 case kPps: | |
| 104 case kSei: | |
| 105 case kIdr: | |
| 106 parsed_payload->frame_type = kVideoFrameKey; | |
| 107 break; | |
| 108 default: | |
| 109 parsed_payload->frame_type = kVideoFrameDelta; | |
| 110 break; | |
| 111 } | |
| 112 return true; | |
| 113 } | |
| 114 | |
| 115 bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload, | |
| 116 const uint8_t* payload_data, | |
| 117 size_t payload_data_length, | |
| 118 size_t* offset) { | |
| 119 if (payload_data_length < kFuAHeaderSize) { | |
| 120 LOG(LS_ERROR) << "FU-A NAL units truncated."; | |
| 121 return false; | |
| 122 } | |
| 123 uint8_t fnri = payload_data[0] & (kFBit | kNriMask); | |
| 124 uint8_t original_nal_type = payload_data[1] & kTypeMask; | |
| 125 bool first_fragment = (payload_data[1] & kSBit) > 0; | |
| 126 | |
| 127 uint8_t original_nal_header = fnri | original_nal_type; | |
| 128 if (first_fragment) { | |
| 129 *offset = kNalHeaderSize; | |
| 130 uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset); | |
| 131 payload[0] = original_nal_header; | |
| 132 } else { | |
| 133 *offset = kFuAHeaderSize; | |
| 134 } | |
| 135 | |
| 136 if (original_nal_type == kIdr) { | |
| 137 parsed_payload->frame_type = kVideoFrameKey; | |
| 138 } else { | |
| 139 parsed_payload->frame_type = kVideoFrameDelta; | |
| 140 } | |
| 141 parsed_payload->type.Video.width = 0; | |
| 142 parsed_payload->type.Video.height = 0; | |
| 143 parsed_payload->type.Video.codec = kRtpVideoH264; | |
| 144 parsed_payload->type.Video.isFirstPacket = first_fragment; | |
| 145 RTPVideoHeaderH264* h264_header = | |
| 146 &parsed_payload->type.Video.codecHeader.H264; | |
| 147 h264_header->packetization_type = kH264FuA; | |
| 148 h264_header->nalu_type = original_nal_type; | |
| 149 return true; | |
| 150 } | |
| 151 } // namespace | 75 } // namespace |
| 152 | 76 |
| 153 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, | 77 RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, |
| 154 size_t max_payload_len) | 78 size_t max_payload_len) |
| 155 : payload_data_(NULL), | 79 : max_payload_len_(max_payload_len) {} |
| 156 payload_size_(0), | |
| 157 max_payload_len_(max_payload_len) { | |
| 158 } | |
| 159 | 80 |
| 160 RtpPacketizerH264::~RtpPacketizerH264() { | 81 RtpPacketizerH264::~RtpPacketizerH264() { |
| 161 } | 82 } |
| 162 | 83 |
| 84 RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length) |
| 85 : buffer(buffer), length(length) {} |
| 86 RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment) |
| 87 : buffer(fragment.buffer), length(fragment.length) {} |
| 88 |
| 163 void RtpPacketizerH264::SetPayloadData( | 89 void RtpPacketizerH264::SetPayloadData( |
| 164 const uint8_t* payload_data, | 90 const uint8_t* payload_data, |
| 165 size_t payload_size, | 91 size_t payload_size, |
| 166 const RTPFragmentationHeader* fragmentation) { | 92 const RTPFragmentationHeader* fragmentation) { |
| 167 assert(packets_.empty()); | 93 RTC_DCHECK(packets_.empty()); |
| 168 assert(fragmentation); | 94 RTC_DCHECK(input_fragments_.empty()); |
| 169 payload_data_ = payload_data; | 95 RTC_DCHECK(fragmentation); |
| 170 payload_size_ = payload_size; | 96 for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) { |
| 171 fragmentation_.CopyFrom(*fragmentation); | 97 const uint8_t* buffer = |
| 98 &payload_data[fragmentation->fragmentationOffset[i]]; |
| 99 size_t length = fragmentation->fragmentationLength[i]; |
| 100 |
| 101 bool updated_sps = false; |
| 102 H264::NaluType nalu_type = H264::ParseNaluType(buffer[0]); |
| 103 if (nalu_type == H264::NaluType::kSps) { |
| 104 // Check if stream uses picture order count type 0, and if so rewrite it |
| 105 // to enable faster decoding. Streams in that format incur additional |
| 106 // delay because it allows decode order to differ from render order. |
| 107 // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain |
| 108 // restrictions on the maximum number of reordered pictures. This reduces |
| 109 // latency significantly, though it still adds about a frame of latency to |
| 110 // decoding. |
| 111 // Note that we do this rewriting both here (send side, in order to |
| 112 // protect legacy receive clients) and below in |
| 113 // RtpDepacketizerH264::ParseSingleNalu (receive side, in orderer to |
| 114 // protect us from unknown or legacy send clients). |
| 115 |
| 116 // Create temporary RBSP decoded buffer of the payload (exlcuding the |
| 117 // leading nalu type header byte (the SpsParser uses only the payload). |
| 118 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp( |
| 119 buffer + H264::kNaluTypeSize, length - H264::kNaluTypeSize); |
| 120 rtc::Optional<SpsParser::SpsState> sps; |
| 121 |
| 122 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); |
| 123 // Add the type header to the output buffer first, so that the rewriter |
| 124 // can append modified payload on top of that. |
| 125 output_buffer->AppendData(buffer[0]); |
| 126 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( |
| 127 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); |
| 128 |
| 129 switch (result) { |
| 130 case SpsVuiRewriter::ParseResult::kVuiRewritten: |
| 131 input_fragments_.push_back( |
| 132 Fragment(output_buffer->data(), output_buffer->size())); |
| 133 input_fragments_.rbegin()->tmp_buffer = std::move(output_buffer); |
| 134 updated_sps = true; |
| 135 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 136 SpsValidEvent::kSentSpsRewritten, |
| 137 SpsValidEvent::kSpsRewrittenMax); |
| 138 break; |
| 139 case SpsVuiRewriter::ParseResult::kPocOk: |
| 140 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 141 SpsValidEvent::kSentSpsPocOk, |
| 142 SpsValidEvent::kSpsRewrittenMax); |
| 143 break; |
| 144 case SpsVuiRewriter::ParseResult::kVuiOk: |
| 145 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 146 SpsValidEvent::kSentSpsVuiOk, |
| 147 SpsValidEvent::kSpsRewrittenMax); |
| 148 break; |
| 149 case SpsVuiRewriter::ParseResult::kFailure: |
| 150 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 151 SpsValidEvent::kSentSpsParseFailure, |
| 152 SpsValidEvent::kSpsRewrittenMax); |
| 153 break; |
| 154 } |
| 155 } |
| 156 |
| 157 if (!updated_sps) |
| 158 input_fragments_.push_back(Fragment(buffer, length)); |
| 159 } |
| 172 GeneratePackets(); | 160 GeneratePackets(); |
| 173 } | 161 } |
| 174 | 162 |
| 175 void RtpPacketizerH264::GeneratePackets() { | 163 void RtpPacketizerH264::GeneratePackets() { |
| 176 for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) { | 164 for (size_t i = 0; i < input_fragments_.size();) { |
| 177 size_t fragment_offset = fragmentation_.fragmentationOffset[i]; | 165 if (input_fragments_[i].length > max_payload_len_) { |
| 178 size_t fragment_length = fragmentation_.fragmentationLength[i]; | 166 PacketizeFuA(i); |
| 179 if (fragment_length > max_payload_len_) { | |
| 180 PacketizeFuA(fragment_offset, fragment_length); | |
| 181 ++i; | 167 ++i; |
| 182 } else { | 168 } else { |
| 183 i = PacketizeStapA(i, fragment_offset, fragment_length); | 169 i = PacketizeStapA(i); |
| 184 } | 170 } |
| 185 } | 171 } |
| 186 } | 172 } |
| 187 | 173 |
| 188 void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset, | 174 void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) { |
| 189 size_t fragment_length) { | |
| 190 // Fragment payload into packets (FU-A). | 175 // Fragment payload into packets (FU-A). |
| 191 // Strip out the original header and leave room for the FU-A header. | 176 // Strip out the original header and leave room for the FU-A header. |
| 192 fragment_length -= kNalHeaderSize; | 177 const Fragment& fragment = input_fragments_[fragment_index]; |
| 193 size_t offset = fragment_offset + kNalHeaderSize; | 178 |
| 179 size_t fragment_length = fragment.length - kNalHeaderSize; |
| 180 size_t offset = kNalHeaderSize; |
| 194 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; | 181 size_t bytes_available = max_payload_len_ - kFuAHeaderSize; |
| 195 size_t fragments = | 182 const size_t num_fragments = |
| 196 (fragment_length + (bytes_available - 1)) / bytes_available; | 183 (fragment_length + (bytes_available - 1)) / bytes_available; |
| 197 size_t avg_size = (fragment_length + fragments - 1) / fragments; | 184 |
| 185 const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments; |
| 198 while (fragment_length > 0) { | 186 while (fragment_length > 0) { |
| 199 size_t packet_length = avg_size; | 187 size_t packet_length = avg_size; |
| 200 if (fragment_length < avg_size) | 188 if (fragment_length < avg_size) |
| 201 packet_length = fragment_length; | 189 packet_length = fragment_length; |
| 202 uint8_t header = payload_data_[fragment_offset]; | 190 packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length), |
| 203 packets_.push(Packet(offset, | 191 offset - kNalHeaderSize == 0, |
| 204 packet_length, | 192 fragment_length == packet_length, false, |
| 205 offset - kNalHeaderSize == fragment_offset, | 193 fragment.buffer[0])); |
| 206 fragment_length == packet_length, | |
| 207 false, | |
| 208 header)); | |
| 209 offset += packet_length; | 194 offset += packet_length; |
| 210 fragment_length -= packet_length; | 195 fragment_length -= packet_length; |
| 211 } | 196 } |
| 212 } | 197 RTC_CHECK_EQ(0u, fragment_length); |
| 213 | 198 } |
| 214 int RtpPacketizerH264::PacketizeStapA(size_t fragment_index, | 199 |
| 215 size_t fragment_offset, | 200 size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) { |
| 216 size_t fragment_length) { | |
| 217 // Aggregate fragments into one packet (STAP-A). | 201 // Aggregate fragments into one packet (STAP-A). |
| 218 size_t payload_size_left = max_payload_len_; | 202 size_t payload_size_left = max_payload_len_; |
| 219 int aggregated_fragments = 0; | 203 int aggregated_fragments = 0; |
| 220 size_t fragment_headers_length = 0; | 204 size_t fragment_headers_length = 0; |
| 221 assert(payload_size_left >= fragment_length); | 205 const Fragment* fragment = &input_fragments_[fragment_index]; |
| 222 while (payload_size_left >= fragment_length + fragment_headers_length) { | 206 RTC_CHECK_GE(payload_size_left, fragment->length); |
| 223 assert(fragment_length > 0); | 207 while (payload_size_left >= fragment->length + fragment_headers_length) { |
| 224 uint8_t header = payload_data_[fragment_offset]; | 208 RTC_CHECK_GT(fragment->length, 0u); |
| 225 packets_.push(Packet(fragment_offset, | 209 packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true, |
| 226 fragment_length, | 210 fragment->buffer[0])); |
| 227 aggregated_fragments == 0, | 211 payload_size_left -= fragment->length; |
| 228 false, | |
| 229 true, | |
| 230 header)); | |
| 231 payload_size_left -= fragment_length; | |
| 232 payload_size_left -= fragment_headers_length; | 212 payload_size_left -= fragment_headers_length; |
| 233 | 213 |
| 234 // Next fragment. | 214 // Next fragment. |
| 235 ++fragment_index; | 215 ++fragment_index; |
| 236 if (fragment_index == fragmentation_.fragmentationVectorSize) | 216 if (fragment_index == input_fragments_.size()) |
| 237 break; | 217 break; |
| 238 fragment_offset = fragmentation_.fragmentationOffset[fragment_index]; | 218 fragment = &input_fragments_[fragment_index]; |
| 239 fragment_length = fragmentation_.fragmentationLength[fragment_index]; | |
| 240 | 219 |
| 241 fragment_headers_length = kLengthFieldSize; | 220 fragment_headers_length = kLengthFieldSize; |
| 242 // If we are going to try to aggregate more fragments into this packet | 221 // If we are going to try to aggregate more fragments into this packet |
| 243 // we need to add the STAP-A NALU header and a length field for the first | 222 // we need to add the STAP-A NALU header and a length field for the first |
| 244 // NALU of this packet. | 223 // NALU of this packet. |
| 245 if (aggregated_fragments == 0) | 224 if (aggregated_fragments == 0) |
| 246 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; | 225 fragment_headers_length += kNalHeaderSize + kLengthFieldSize; |
| 247 ++aggregated_fragments; | 226 ++aggregated_fragments; |
| 248 } | 227 } |
| 249 packets_.back().last_fragment = true; | 228 packets_.back().last_fragment = true; |
| 250 return fragment_index; | 229 return fragment_index; |
| 251 } | 230 } |
| 252 | 231 |
| 253 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, | 232 bool RtpPacketizerH264::NextPacket(uint8_t* buffer, |
| 254 size_t* bytes_to_send, | 233 size_t* bytes_to_send, |
| 255 bool* last_packet) { | 234 bool* last_packet) { |
| 256 *bytes_to_send = 0; | 235 *bytes_to_send = 0; |
| 257 if (packets_.empty()) { | 236 if (packets_.empty()) { |
| 258 *bytes_to_send = 0; | 237 *bytes_to_send = 0; |
| 259 *last_packet = true; | 238 *last_packet = true; |
| 260 return false; | 239 return false; |
| 261 } | 240 } |
| 262 | 241 |
| 263 Packet packet = packets_.front(); | 242 PacketUnit packet = packets_.front(); |
| 264 | 243 |
| 265 if (packet.first_fragment && packet.last_fragment) { | 244 if (packet.first_fragment && packet.last_fragment) { |
| 266 // Single NAL unit packet. | 245 // Single NAL unit packet. |
| 267 *bytes_to_send = packet.size; | 246 *bytes_to_send = packet.source_fragment.length; |
| 268 memcpy(buffer, &payload_data_[packet.offset], packet.size); | 247 memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send); |
| 269 packets_.pop(); | 248 packets_.pop(); |
| 270 assert(*bytes_to_send <= max_payload_len_); | 249 input_fragments_.pop_front(); |
| 250 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
| 271 } else if (packet.aggregated) { | 251 } else if (packet.aggregated) { |
| 272 NextAggregatePacket(buffer, bytes_to_send); | 252 NextAggregatePacket(buffer, bytes_to_send); |
| 273 assert(*bytes_to_send <= max_payload_len_); | 253 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
| 274 } else { | 254 } else { |
| 275 NextFragmentPacket(buffer, bytes_to_send); | 255 NextFragmentPacket(buffer, bytes_to_send); |
| 276 assert(*bytes_to_send <= max_payload_len_); | 256 RTC_CHECK_LE(*bytes_to_send, max_payload_len_); |
| 277 } | 257 } |
| 278 *last_packet = packets_.empty(); | 258 *last_packet = packets_.empty(); |
| 279 return true; | 259 return true; |
| 280 } | 260 } |
| 281 | 261 |
| 282 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, | 262 void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, |
| 283 size_t* bytes_to_send) { | 263 size_t* bytes_to_send) { |
| 284 Packet packet = packets_.front(); | 264 PacketUnit* packet = &packets_.front(); |
| 285 assert(packet.first_fragment); | 265 RTC_CHECK(packet->first_fragment); |
| 286 // STAP-A NALU header. | 266 // STAP-A NALU header. |
| 287 buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA; | 267 buffer[0] = (packet->header & (kFBit | kNriMask)) | H264::NaluType::kStapA; |
| 288 int index = kNalHeaderSize; | 268 int index = kNalHeaderSize; |
| 289 *bytes_to_send += kNalHeaderSize; | 269 *bytes_to_send += kNalHeaderSize; |
| 290 while (packet.aggregated) { | 270 while (packet->aggregated) { |
| 271 const Fragment& fragment = packet->source_fragment; |
| 291 // Add NAL unit length field. | 272 // Add NAL unit length field. |
| 292 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size); | 273 ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length); |
| 293 index += kLengthFieldSize; | 274 index += kLengthFieldSize; |
| 294 *bytes_to_send += kLengthFieldSize; | 275 *bytes_to_send += kLengthFieldSize; |
| 295 // Add NAL unit. | 276 // Add NAL unit. |
| 296 memcpy(&buffer[index], &payload_data_[packet.offset], packet.size); | 277 memcpy(&buffer[index], fragment.buffer, fragment.length); |
| 297 index += packet.size; | 278 index += fragment.length; |
| 298 *bytes_to_send += packet.size; | 279 *bytes_to_send += fragment.length; |
| 299 packets_.pop(); | 280 packets_.pop(); |
| 300 if (packet.last_fragment) | 281 input_fragments_.pop_front(); |
| 282 if (packet->last_fragment) |
| 301 break; | 283 break; |
| 302 packet = packets_.front(); | 284 packet = &packets_.front(); |
| 303 } | 285 } |
| 304 assert(packet.last_fragment); | 286 RTC_CHECK(packet->last_fragment); |
| 305 } | 287 } |
| 306 | 288 |
| 307 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, | 289 void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, |
| 308 size_t* bytes_to_send) { | 290 size_t* bytes_to_send) { |
| 309 Packet packet = packets_.front(); | 291 PacketUnit* packet = &packets_.front(); |
| 310 // NAL unit fragmented over multiple packets (FU-A). | 292 // NAL unit fragmented over multiple packets (FU-A). |
| 311 // We do not send original NALU header, so it will be replaced by the | 293 // We do not send original NALU header, so it will be replaced by the |
| 312 // FU indicator header of the first packet. | 294 // FU indicator header of the first packet. |
| 313 uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA; | 295 uint8_t fu_indicator = |
| 296 (packet->header & (kFBit | kNriMask)) | H264::NaluType::kFuA; |
| 314 uint8_t fu_header = 0; | 297 uint8_t fu_header = 0; |
| 315 | 298 |
| 316 // S | E | R | 5 bit type. | 299 // S | E | R | 5 bit type. |
| 317 fu_header |= (packet.first_fragment ? kSBit : 0); | 300 fu_header |= (packet->first_fragment ? kSBit : 0); |
| 318 fu_header |= (packet.last_fragment ? kEBit : 0); | 301 fu_header |= (packet->last_fragment ? kEBit : 0); |
| 319 uint8_t type = packet.header & kTypeMask; | 302 uint8_t type = packet->header & kTypeMask; |
| 320 fu_header |= type; | 303 fu_header |= type; |
| 321 buffer[0] = fu_indicator; | 304 buffer[0] = fu_indicator; |
| 322 buffer[1] = fu_header; | 305 buffer[1] = fu_header; |
| 323 | 306 |
| 324 if (packet.last_fragment) { | 307 const Fragment& fragment = packet->source_fragment; |
| 325 *bytes_to_send = packet.size + kFuAHeaderSize; | 308 *bytes_to_send = fragment.length + kFuAHeaderSize; |
| 326 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); | 309 memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length); |
| 327 } else { | 310 if (packet->last_fragment) |
| 328 *bytes_to_send = packet.size + kFuAHeaderSize; | 311 input_fragments_.pop_front(); |
| 329 memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size); | |
| 330 } | |
| 331 packets_.pop(); | 312 packets_.pop(); |
| 332 } | 313 } |
| 333 | 314 |
| 334 ProtectionType RtpPacketizerH264::GetProtectionType() { | 315 ProtectionType RtpPacketizerH264::GetProtectionType() { |
| 335 return kProtectedPacket; | 316 return kProtectedPacket; |
| 336 } | 317 } |
| 337 | 318 |
| 338 StorageType RtpPacketizerH264::GetStorageType( | 319 StorageType RtpPacketizerH264::GetStorageType( |
| 339 uint32_t retransmission_settings) { | 320 uint32_t retransmission_settings) { |
| 340 return kAllowRetransmission; | 321 return kAllowRetransmission; |
| 341 } | 322 } |
| 342 | 323 |
| 343 std::string RtpPacketizerH264::ToString() { | 324 std::string RtpPacketizerH264::ToString() { |
| 344 return "RtpPacketizerH264"; | 325 return "RtpPacketizerH264"; |
| 345 } | 326 } |
| 346 | 327 |
| 328 RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {} |
| 329 RtpDepacketizerH264::~RtpDepacketizerH264() {} |
| 330 |
| 347 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, | 331 bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, |
| 348 const uint8_t* payload_data, | 332 const uint8_t* payload_data, |
| 349 size_t payload_data_length) { | 333 size_t payload_data_length) { |
| 350 assert(parsed_payload != NULL); | 334 RTC_CHECK(parsed_payload != nullptr); |
| 351 if (payload_data_length == 0) { | 335 if (payload_data_length == 0) { |
| 352 LOG(LS_ERROR) << "Empty payload."; | 336 LOG(LS_ERROR) << "Empty payload."; |
| 353 return false; | 337 return false; |
| 354 } | 338 } |
| 355 | 339 |
| 340 offset_ = 0; |
| 341 length_ = payload_data_length; |
| 342 modified_buffer_.reset(); |
| 343 |
| 356 uint8_t nal_type = payload_data[0] & kTypeMask; | 344 uint8_t nal_type = payload_data[0] & kTypeMask; |
| 357 size_t offset = 0; | 345 if (nal_type == H264::NaluType::kFuA) { |
| 358 if (nal_type == kFuA) { | |
| 359 // Fragmented NAL units (FU-A). | 346 // Fragmented NAL units (FU-A). |
| 360 if (!ParseFuaNalu( | 347 if (!ParseFuaNalu(parsed_payload, payload_data)) |
| 361 parsed_payload, payload_data, payload_data_length, &offset)) { | 348 return false; |
| 362 return false; | |
| 363 } | |
| 364 } else { | 349 } else { |
| 365 // We handle STAP-A and single NALU's the same way here. The jitter buffer | 350 // We handle STAP-A and single NALU's the same way here. The jitter buffer |
| 366 // will depacketize the STAP-A into NAL units later. | 351 // will depacketize the STAP-A into NAL units later. |
| 367 if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length)) | 352 // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec. |
| 368 return false; | 353 if (!ProcessStapAOrSingleNalu(parsed_payload, payload_data)) |
| 369 } | 354 return false; |
| 370 | 355 } |
| 371 parsed_payload->payload = payload_data + offset; | 356 |
| 372 parsed_payload->payload_length = payload_data_length - offset; | 357 const uint8_t* payload = |
| 358 modified_buffer_ ? modified_buffer_->data() : payload_data; |
| 359 |
| 360 parsed_payload->payload = payload + offset_; |
| 361 parsed_payload->payload_length = length_; |
| 373 return true; | 362 return true; |
| 374 } | 363 } |
| 364 |
| 365 bool RtpDepacketizerH264::ProcessStapAOrSingleNalu( |
| 366 ParsedPayload* parsed_payload, |
| 367 const uint8_t* payload_data) { |
| 368 parsed_payload->type.Video.width = 0; |
| 369 parsed_payload->type.Video.height = 0; |
| 370 parsed_payload->type.Video.codec = kRtpVideoH264; |
| 371 parsed_payload->type.Video.isFirstPacket = true; |
| 372 RTPVideoHeaderH264* h264_header = |
| 373 &parsed_payload->type.Video.codecHeader.H264; |
| 374 |
| 375 const uint8_t* nalu_start = payload_data + kNalHeaderSize; |
| 376 const size_t nalu_length = length_ - kNalHeaderSize; |
| 377 uint8_t nal_type = payload_data[0] & kTypeMask; |
| 378 std::vector<size_t> nalu_start_offsets; |
| 379 if (nal_type == H264::NaluType::kStapA) { |
| 380 // Skip the StapA header (StapA NAL type + length). |
| 381 if (length_ <= kStapAHeaderSize) { |
| 382 LOG(LS_ERROR) << "StapA header truncated."; |
| 383 return false; |
| 384 } |
| 385 |
| 386 if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets)) { |
| 387 LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; |
| 388 return false; |
| 389 } |
| 390 |
| 391 h264_header->packetization_type = kH264StapA; |
| 392 nal_type = payload_data[kStapAHeaderSize] & kTypeMask; |
| 393 } else { |
| 394 h264_header->packetization_type = kH264SingleNalu; |
| 395 nalu_start_offsets.push_back(0); |
| 396 } |
| 397 h264_header->nalu_type = nal_type; |
| 398 parsed_payload->frame_type = kVideoFrameDelta; |
| 399 |
| 400 nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset. |
| 401 for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) { |
| 402 size_t start_offset = nalu_start_offsets[i]; |
| 403 // End offset is actually start offset for next unit, excluding length field |
| 404 // so remove that from this units length. |
| 405 size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize; |
| 406 nal_type = payload_data[start_offset] & kTypeMask; |
| 407 start_offset += H264::kNaluTypeSize; |
| 408 |
| 409 if (nal_type == H264::NaluType::kSps) { |
| 410 // Check if VUI is present in SPS and if it needs to be modified to avoid |
| 411 // excessive decoder latency. |
| 412 |
| 413 // Copy any previous data first (likely just the first header). |
| 414 std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); |
| 415 if (start_offset) |
| 416 output_buffer->AppendData(payload_data, start_offset); |
| 417 |
| 418 // RBSP decode of payload data. |
| 419 std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp( |
| 420 &payload_data[start_offset], end_offset - start_offset); |
| 421 rtc::Optional<SpsParser::SpsState> sps; |
| 422 |
| 423 SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( |
| 424 rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); |
| 425 switch (result) { |
| 426 case SpsVuiRewriter::ParseResult::kVuiRewritten: |
| 427 if (modified_buffer_) { |
| 428 LOG(LS_WARNING) << "More than one H264 SPS NAL units needing " |
| 429 "rewriting found within a single STAP-A packet. " |
| 430 "Keeping the first and rewriting the last."; |
| 431 } |
| 432 |
| 433 // Rewrite length field to new SPS size. |
| 434 if (h264_header->packetization_type == kH264StapA) { |
| 435 size_t length_field_offset = |
| 436 start_offset - (H264::kNaluTypeSize + kLengthFieldSize); |
| 437 // Stap-A Length includes payload data and type header. |
| 438 size_t rewritten_size = |
| 439 output_buffer->size() - start_offset + H264::kNaluTypeSize; |
| 440 ByteWriter<uint16_t>::WriteBigEndian( |
| 441 &(*output_buffer)[length_field_offset], rewritten_size); |
| 442 } |
| 443 |
| 444 // Append rest of packet. |
| 445 output_buffer->AppendData(&payload_data[end_offset], |
| 446 nalu_length + kNalHeaderSize - end_offset); |
| 447 |
| 448 modified_buffer_ = std::move(output_buffer); |
| 449 length_ = modified_buffer_->size(); |
| 450 |
| 451 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 452 SpsValidEvent::kReceivedSpsRewritten, |
| 453 SpsValidEvent::kSpsRewrittenMax); |
| 454 break; |
| 455 case SpsVuiRewriter::ParseResult::kPocOk: |
| 456 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 457 SpsValidEvent::kReceivedSpsPocOk, |
| 458 SpsValidEvent::kSpsRewrittenMax); |
| 459 break; |
| 460 case SpsVuiRewriter::ParseResult::kVuiOk: |
| 461 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 462 SpsValidEvent::kReceivedSpsVuiOk, |
| 463 SpsValidEvent::kSpsRewrittenMax); |
| 464 break; |
| 465 case SpsVuiRewriter::ParseResult::kFailure: |
| 466 RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| 467 SpsValidEvent::kReceivedSpsParseFailure, |
| 468 SpsValidEvent::kSpsRewrittenMax); |
| 469 break; |
| 470 } |
| 471 |
| 472 if (sps) { |
| 473 parsed_payload->type.Video.width = sps->width; |
| 474 parsed_payload->type.Video.height = sps->height; |
| 475 } |
| 476 parsed_payload->frame_type = kVideoFrameKey; |
| 477 } else if (nal_type == H264::NaluType::kPps || |
| 478 nal_type == H264::NaluType::kSei || |
| 479 nal_type == H264::NaluType::kIdr) { |
| 480 parsed_payload->frame_type = kVideoFrameKey; |
| 481 } |
| 482 } |
| 483 |
| 484 return true; |
| 485 } |
| 486 |
| 487 bool RtpDepacketizerH264::ParseFuaNalu( |
| 488 RtpDepacketizer::ParsedPayload* parsed_payload, |
| 489 const uint8_t* payload_data) { |
| 490 if (length_ < kFuAHeaderSize) { |
| 491 LOG(LS_ERROR) << "FU-A NAL units truncated."; |
| 492 return false; |
| 493 } |
| 494 uint8_t fnri = payload_data[0] & (kFBit | kNriMask); |
| 495 uint8_t original_nal_type = payload_data[1] & kTypeMask; |
| 496 bool first_fragment = (payload_data[1] & kSBit) > 0; |
| 497 |
| 498 if (first_fragment) { |
| 499 offset_ = 0; |
| 500 length_ -= kNalHeaderSize; |
| 501 uint8_t original_nal_header = fnri | original_nal_type; |
| 502 modified_buffer_.reset(new rtc::Buffer()); |
| 503 modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_); |
| 504 (*modified_buffer_)[0] = original_nal_header; |
| 505 } else { |
| 506 offset_ = kFuAHeaderSize; |
| 507 length_ -= kFuAHeaderSize; |
| 508 } |
| 509 |
| 510 if (original_nal_type == H264::NaluType::kIdr) { |
| 511 parsed_payload->frame_type = kVideoFrameKey; |
| 512 } else { |
| 513 parsed_payload->frame_type = kVideoFrameDelta; |
| 514 } |
| 515 parsed_payload->type.Video.width = 0; |
| 516 parsed_payload->type.Video.height = 0; |
| 517 parsed_payload->type.Video.codec = kRtpVideoH264; |
| 518 parsed_payload->type.Video.isFirstPacket = first_fragment; |
| 519 RTPVideoHeaderH264* h264_header = |
| 520 &parsed_payload->type.Video.codecHeader.H264; |
| 521 h264_header->packetization_type = kH264FuA; |
| 522 h264_header->nalu_type = original_nal_type; |
| 523 return true; |
| 524 } |
| 525 |
| 375 } // namespace webrtc | 526 } // namespace webrtc |
| OLD | NEW |