Index: webrtc/modules/audio_processing/aecm/aecm_core_c.c |
diff --git a/webrtc/modules/audio_processing/aecm/aecm_core_c.c b/webrtc/modules/audio_processing/aecm/aecm_core_c.c |
deleted file mode 100644 |
index 3a8fafa4ece495710b713cb5215fd59a92bc5279..0000000000000000000000000000000000000000 |
--- a/webrtc/modules/audio_processing/aecm/aecm_core_c.c |
+++ /dev/null |
@@ -1,771 +0,0 @@ |
-/* |
- * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-#include "webrtc/modules/audio_processing/aecm/aecm_core.h" |
- |
-#include <assert.h> |
-#include <stddef.h> |
-#include <stdlib.h> |
- |
-#include "webrtc/common_audio/ring_buffer.h" |
-#include "webrtc/common_audio/signal_processing/include/real_fft.h" |
-#include "webrtc/modules/audio_processing/aecm/echo_control_mobile.h" |
-#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h" |
-#include "webrtc/system_wrappers/include/compile_assert_c.h" |
-#include "webrtc/system_wrappers/include/cpu_features_wrapper.h" |
-#include "webrtc/typedefs.h" |
- |
-// Square root of Hanning window in Q14. |
-#if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON) |
-// Table is defined in an ARM assembly file. |
-extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END; |
-#else |
-static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = { |
- 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, |
- 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224, |
- 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040, |
- 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514, |
- 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, |
- 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079, |
- 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034, |
- 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384 |
-}; |
-#endif |
- |
-#ifdef AECM_WITH_ABS_APPROX |
-//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation |
-static const uint16_t kAlpha1 = 32584; |
-//Q15 beta = 0.12967166976970 const Factor for magnitude approximation |
-static const uint16_t kBeta1 = 4249; |
-//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation |
-static const uint16_t kAlpha2 = 30879; |
-//Q15 beta = 0.33787806009150 const Factor for magnitude approximation |
-static const uint16_t kBeta2 = 11072; |
-//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation |
-static const uint16_t kAlpha3 = 26951; |
-//Q15 beta = 0.57762063060713 const Factor for magnitude approximation |
-static const uint16_t kBeta3 = 18927; |
-#endif |
- |
-static const int16_t kNoiseEstQDomain = 15; |
-static const int16_t kNoiseEstIncCount = 5; |
- |
-static void ComfortNoise(AecmCore* aecm, |
- const uint16_t* dfa, |
- ComplexInt16* out, |
- const int16_t* lambda); |
- |
-static void WindowAndFFT(AecmCore* aecm, |
- int16_t* fft, |
- const int16_t* time_signal, |
- ComplexInt16* freq_signal, |
- int time_signal_scaling) { |
- int i = 0; |
- |
- // FFT of signal |
- for (i = 0; i < PART_LEN; i++) { |
- // Window time domain signal and insert into real part of |
- // transformation array |fft| |
- int16_t scaled_time_signal = time_signal[i] << time_signal_scaling; |
- fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14); |
- scaled_time_signal = time_signal[i + PART_LEN] << time_signal_scaling; |
- fft[PART_LEN + i] = (int16_t)(( |
- scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14); |
- } |
- |
- // Do forward FFT, then take only the first PART_LEN complex samples, |
- // and change signs of the imaginary parts. |
- WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal); |
- for (i = 0; i < PART_LEN; i++) { |
- freq_signal[i].imag = -freq_signal[i].imag; |
- } |
-} |
- |
-static void InverseFFTAndWindow(AecmCore* aecm, |
- int16_t* fft, |
- ComplexInt16* efw, |
- int16_t* output, |
- const int16_t* nearendClean) { |
- int i, j, outCFFT; |
- int32_t tmp32no1; |
- // Reuse |efw| for the inverse FFT output after transferring |
- // the contents to |fft|. |
- int16_t* ifft_out = (int16_t*)efw; |
- |
- // Synthesis |
- for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) { |
- fft[j] = efw[i].real; |
- fft[j + 1] = -efw[i].imag; |
- } |
- fft[0] = efw[0].real; |
- fft[1] = -efw[0].imag; |
- |
- fft[PART_LEN2] = efw[PART_LEN].real; |
- fft[PART_LEN2 + 1] = -efw[PART_LEN].imag; |
- |
- // Inverse FFT. Keep outCFFT to scale the samples in the next block. |
- outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out); |
- for (i = 0; i < PART_LEN; i++) { |
- ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
- ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14); |
- tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i], |
- outCFFT - aecm->dfaCleanQDomain); |
- output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, |
- tmp32no1 + aecm->outBuf[i], |
- WEBRTC_SPL_WORD16_MIN); |
- |
- tmp32no1 = (ifft_out[PART_LEN + i] * |
- WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14; |
- tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, |
- outCFFT - aecm->dfaCleanQDomain); |
- aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, |
- tmp32no1, |
- WEBRTC_SPL_WORD16_MIN); |
- } |
- |
- // Copy the current block to the old position |
- // (aecm->outBuf is shifted elsewhere) |
- memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN); |
- memcpy(aecm->dBufNoisy, |
- aecm->dBufNoisy + PART_LEN, |
- sizeof(int16_t) * PART_LEN); |
- if (nearendClean != NULL) |
- { |
- memcpy(aecm->dBufClean, |
- aecm->dBufClean + PART_LEN, |
- sizeof(int16_t) * PART_LEN); |
- } |
-} |
- |
-// Transforms a time domain signal into the frequency domain, outputting the |
-// complex valued signal, absolute value and sum of absolute values. |
-// |
-// time_signal [in] Pointer to time domain signal |
-// freq_signal_real [out] Pointer to real part of frequency domain array |
-// freq_signal_imag [out] Pointer to imaginary part of frequency domain |
-// array |
-// freq_signal_abs [out] Pointer to absolute value of frequency domain |
-// array |
-// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in |
-// the frequency domain array |
-// return value The Q-domain of current frequency values |
-// |
-static int TimeToFrequencyDomain(AecmCore* aecm, |
- const int16_t* time_signal, |
- ComplexInt16* freq_signal, |
- uint16_t* freq_signal_abs, |
- uint32_t* freq_signal_sum_abs) { |
- int i = 0; |
- int time_signal_scaling = 0; |
- |
- int32_t tmp32no1 = 0; |
- int32_t tmp32no2 = 0; |
- |
- // In fft_buf, +16 for 32-byte alignment. |
- int16_t fft_buf[PART_LEN4 + 16]; |
- int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31); |
- |
- int16_t tmp16no1; |
-#ifndef WEBRTC_ARCH_ARM_V7 |
- int16_t tmp16no2; |
-#endif |
-#ifdef AECM_WITH_ABS_APPROX |
- int16_t max_value = 0; |
- int16_t min_value = 0; |
- uint16_t alpha = 0; |
- uint16_t beta = 0; |
-#endif |
- |
-#ifdef AECM_DYNAMIC_Q |
- tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2); |
- time_signal_scaling = WebRtcSpl_NormW16(tmp16no1); |
-#endif |
- |
- WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling); |
- |
- // Extract imaginary and real part, calculate the magnitude for |
- // all frequency bins |
- freq_signal[0].imag = 0; |
- freq_signal[PART_LEN].imag = 0; |
- freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real); |
- freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16( |
- freq_signal[PART_LEN].real); |
- (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) + |
- (uint32_t)(freq_signal_abs[PART_LEN]); |
- |
- for (i = 1; i < PART_LEN; i++) |
- { |
- if (freq_signal[i].real == 0) |
- { |
- freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag); |
- } |
- else if (freq_signal[i].imag == 0) |
- { |
- freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real); |
- } |
- else |
- { |
- // Approximation for magnitude of complex fft output |
- // magn = sqrt(real^2 + imag^2) |
- // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|) |
- // |
- // The parameters alpha and beta are stored in Q15 |
- |
-#ifdef AECM_WITH_ABS_APPROX |
- tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); |
- tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); |
- |
- if(tmp16no1 > tmp16no2) |
- { |
- max_value = tmp16no1; |
- min_value = tmp16no2; |
- } else |
- { |
- max_value = tmp16no2; |
- min_value = tmp16no1; |
- } |
- |
- // Magnitude in Q(-6) |
- if ((max_value >> 2) > min_value) |
- { |
- alpha = kAlpha1; |
- beta = kBeta1; |
- } else if ((max_value >> 1) > min_value) |
- { |
- alpha = kAlpha2; |
- beta = kBeta2; |
- } else |
- { |
- alpha = kAlpha3; |
- beta = kBeta3; |
- } |
- tmp16no1 = (int16_t)((max_value * alpha) >> 15); |
- tmp16no2 = (int16_t)((min_value * beta) >> 15); |
- freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2; |
-#else |
-#ifdef WEBRTC_ARCH_ARM_V7 |
- __asm __volatile( |
- "smulbb %[tmp32no1], %[real], %[real]\n\t" |
- "smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t" |
- :[tmp32no1]"+&r"(tmp32no1), |
- [tmp32no2]"=r"(tmp32no2) |
- :[real]"r"(freq_signal[i].real), |
- [imag]"r"(freq_signal[i].imag) |
- ); |
-#else |
- tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); |
- tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); |
- tmp32no1 = tmp16no1 * tmp16no1; |
- tmp32no2 = tmp16no2 * tmp16no2; |
- tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2); |
-#endif // WEBRTC_ARCH_ARM_V7 |
- tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2); |
- |
- freq_signal_abs[i] = (uint16_t)tmp32no1; |
-#endif // AECM_WITH_ABS_APPROX |
- } |
- (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i]; |
- } |
- |
- return time_signal_scaling; |
-} |
- |
-int WebRtcAecm_ProcessBlock(AecmCore* aecm, |
- const int16_t* farend, |
- const int16_t* nearendNoisy, |
- const int16_t* nearendClean, |
- int16_t* output) { |
- int i; |
- |
- uint32_t xfaSum; |
- uint32_t dfaNoisySum; |
- uint32_t dfaCleanSum; |
- uint32_t echoEst32Gained; |
- uint32_t tmpU32; |
- |
- int32_t tmp32no1; |
- |
- uint16_t xfa[PART_LEN1]; |
- uint16_t dfaNoisy[PART_LEN1]; |
- uint16_t dfaClean[PART_LEN1]; |
- uint16_t* ptrDfaClean = dfaClean; |
- const uint16_t* far_spectrum_ptr = NULL; |
- |
- // 32 byte aligned buffers (with +8 or +16). |
- // TODO(kma): define fft with ComplexInt16. |
- int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe. |
- int32_t echoEst32_buf[PART_LEN1 + 8]; |
- int32_t dfw_buf[PART_LEN2 + 8]; |
- int32_t efw_buf[PART_LEN2 + 8]; |
- |
- int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31); |
- int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31); |
- ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31); |
- ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31); |
- |
- int16_t hnl[PART_LEN1]; |
- int16_t numPosCoef = 0; |
- int16_t nlpGain = ONE_Q14; |
- int delay; |
- int16_t tmp16no1; |
- int16_t tmp16no2; |
- int16_t mu; |
- int16_t supGain; |
- int16_t zeros32, zeros16; |
- int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf; |
- int far_q; |
- int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff; |
- |
- const int kMinPrefBand = 4; |
- const int kMaxPrefBand = 24; |
- int32_t avgHnl32 = 0; |
- |
- // Determine startup state. There are three states: |
- // (0) the first CONV_LEN blocks |
- // (1) another CONV_LEN blocks |
- // (2) the rest |
- |
- if (aecm->startupState < 2) |
- { |
- aecm->startupState = (aecm->totCount >= CONV_LEN) + |
- (aecm->totCount >= CONV_LEN2); |
- } |
- // END: Determine startup state |
- |
- // Buffer near and far end signals |
- memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN); |
- memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN); |
- if (nearendClean != NULL) |
- { |
- memcpy(aecm->dBufClean + PART_LEN, |
- nearendClean, |
- sizeof(int16_t) * PART_LEN); |
- } |
- |
- // Transform far end signal from time domain to frequency domain. |
- far_q = TimeToFrequencyDomain(aecm, |
- aecm->xBuf, |
- dfw, |
- xfa, |
- &xfaSum); |
- |
- // Transform noisy near end signal from time domain to frequency domain. |
- zerosDBufNoisy = TimeToFrequencyDomain(aecm, |
- aecm->dBufNoisy, |
- dfw, |
- dfaNoisy, |
- &dfaNoisySum); |
- aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain; |
- aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy; |
- |
- |
- if (nearendClean == NULL) |
- { |
- ptrDfaClean = dfaNoisy; |
- aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld; |
- aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain; |
- dfaCleanSum = dfaNoisySum; |
- } else |
- { |
- // Transform clean near end signal from time domain to frequency domain. |
- zerosDBufClean = TimeToFrequencyDomain(aecm, |
- aecm->dBufClean, |
- dfw, |
- dfaClean, |
- &dfaCleanSum); |
- aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain; |
- aecm->dfaCleanQDomain = (int16_t)zerosDBufClean; |
- } |
- |
- // Get the delay |
- // Save far-end history and estimate delay |
- WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q); |
- if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, |
- xfa, |
- PART_LEN1, |
- far_q) == -1) { |
- return -1; |
- } |
- delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, |
- dfaNoisy, |
- PART_LEN1, |
- zerosDBufNoisy); |
- if (delay == -1) |
- { |
- return -1; |
- } |
- else if (delay == -2) |
- { |
- // If the delay is unknown, we assume zero. |
- // NOTE: this will have to be adjusted if we ever add lookahead. |
- delay = 0; |
- } |
- |
- if (aecm->fixedDelay >= 0) |
- { |
- // Use fixed delay |
- delay = aecm->fixedDelay; |
- } |
- |
- // Get aligned far end spectrum |
- far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay); |
- zerosXBuf = (int16_t) far_q; |
- if (far_spectrum_ptr == NULL) |
- { |
- return -1; |
- } |
- |
- // Calculate log(energy) and update energy threshold levels |
- WebRtcAecm_CalcEnergies(aecm, |
- far_spectrum_ptr, |
- zerosXBuf, |
- dfaNoisySum, |
- echoEst32); |
- |
- // Calculate stepsize |
- mu = WebRtcAecm_CalcStepSize(aecm); |
- |
- // Update counters |
- aecm->totCount++; |
- |
- // This is the channel estimation algorithm. |
- // It is base on NLMS but has a variable step length, |
- // which was calculated above. |
- WebRtcAecm_UpdateChannel(aecm, |
- far_spectrum_ptr, |
- zerosXBuf, |
- dfaNoisy, |
- mu, |
- echoEst32); |
- supGain = WebRtcAecm_CalcSuppressionGain(aecm); |
- |
- |
- // Calculate Wiener filter hnl[] |
- for (i = 0; i < PART_LEN1; i++) |
- { |
- // Far end signal through channel estimate in Q8 |
- // How much can we shift right to preserve resolution |
- tmp32no1 = echoEst32[i] - aecm->echoFilt[i]; |
- aecm->echoFilt[i] += (tmp32no1 * 50) >> 8; |
- |
- zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1; |
- zeros16 = WebRtcSpl_NormW16(supGain) + 1; |
- if (zeros32 + zeros16 > 16) |
- { |
- // Multiplication is safe |
- // Result in |
- // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+ |
- // aecm->xfaQDomainBuf[diff]) |
- echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], |
- (uint16_t)supGain); |
- resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN; |
- resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); |
- } else |
- { |
- tmp16no1 = 17 - zeros32 - zeros16; |
- resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 - |
- RESOLUTION_SUPGAIN; |
- resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); |
- if (zeros32 > tmp16no1) |
- { |
- echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], |
- supGain >> tmp16no1); |
- } else |
- { |
- // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16) |
- echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain; |
- } |
- } |
- |
- zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]); |
- assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative. |
- dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld; |
- if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) { |
- tmp16no1 = aecm->nearFilt[i] << zeros16; |
- qDomainDiff = zeros16 - dfa_clean_q_domain_diff; |
- tmp16no2 = ptrDfaClean[i] >> -qDomainDiff; |
- } else { |
- tmp16no1 = dfa_clean_q_domain_diff < 0 |
- ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff |
- : aecm->nearFilt[i] << dfa_clean_q_domain_diff; |
- qDomainDiff = 0; |
- tmp16no2 = ptrDfaClean[i]; |
- } |
- tmp32no1 = (int32_t)(tmp16no2 - tmp16no1); |
- tmp16no2 = (int16_t)(tmp32no1 >> 4); |
- tmp16no2 += tmp16no1; |
- zeros16 = WebRtcSpl_NormW16(tmp16no2); |
- if ((tmp16no2) & (-qDomainDiff > zeros16)) { |
- aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX; |
- } else { |
- aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff |
- : tmp16no2 >> qDomainDiff; |
- } |
- |
- // Wiener filter coefficients, resulting hnl in Q14 |
- if (echoEst32Gained == 0) |
- { |
- hnl[i] = ONE_Q14; |
- } else if (aecm->nearFilt[i] == 0) |
- { |
- hnl[i] = 0; |
- } else |
- { |
- // Multiply the suppression gain |
- // Rounding |
- echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1); |
- tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained, |
- (uint16_t)aecm->nearFilt[i]); |
- |
- // Current resolution is |
- // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32)) |
- // Make sure we are in Q14 |
- tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff); |
- if (tmp32no1 > ONE_Q14) |
- { |
- hnl[i] = 0; |
- } else if (tmp32no1 < 0) |
- { |
- hnl[i] = ONE_Q14; |
- } else |
- { |
- // 1-echoEst/dfa |
- hnl[i] = ONE_Q14 - (int16_t)tmp32no1; |
- if (hnl[i] < 0) |
- { |
- hnl[i] = 0; |
- } |
- } |
- } |
- if (hnl[i]) |
- { |
- numPosCoef++; |
- } |
- } |
- // Only in wideband. Prevent the gain in upper band from being larger than |
- // in lower band. |
- if (aecm->mult == 2) |
- { |
- // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause |
- // speech distortion in double-talk. |
- for (i = 0; i < PART_LEN1; i++) |
- { |
- hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14); |
- } |
- |
- for (i = kMinPrefBand; i <= kMaxPrefBand; i++) |
- { |
- avgHnl32 += (int32_t)hnl[i]; |
- } |
- assert(kMaxPrefBand - kMinPrefBand + 1 > 0); |
- avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1); |
- |
- for (i = kMaxPrefBand; i < PART_LEN1; i++) |
- { |
- if (hnl[i] > (int16_t)avgHnl32) |
- { |
- hnl[i] = (int16_t)avgHnl32; |
- } |
- } |
- } |
- |
- // Calculate NLP gain, result is in Q14 |
- if (aecm->nlpFlag) |
- { |
- for (i = 0; i < PART_LEN1; i++) |
- { |
- // Truncate values close to zero and one. |
- if (hnl[i] > NLP_COMP_HIGH) |
- { |
- hnl[i] = ONE_Q14; |
- } else if (hnl[i] < NLP_COMP_LOW) |
- { |
- hnl[i] = 0; |
- } |
- |
- // Remove outliers |
- if (numPosCoef < 3) |
- { |
- nlpGain = 0; |
- } else |
- { |
- nlpGain = ONE_Q14; |
- } |
- |
- // NLP |
- if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14)) |
- { |
- hnl[i] = ONE_Q14; |
- } else |
- { |
- hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14); |
- } |
- |
- // multiply with Wiener coefficients |
- efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, |
- hnl[i], 14)); |
- efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, |
- hnl[i], 14)); |
- } |
- } |
- else |
- { |
- // multiply with Wiener coefficients |
- for (i = 0; i < PART_LEN1; i++) |
- { |
- efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, |
- hnl[i], 14)); |
- efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, |
- hnl[i], 14)); |
- } |
- } |
- |
- if (aecm->cngMode == AecmTrue) |
- { |
- ComfortNoise(aecm, ptrDfaClean, efw, hnl); |
- } |
- |
- InverseFFTAndWindow(aecm, fft, efw, output, nearendClean); |
- |
- return 0; |
-} |
- |
-static void ComfortNoise(AecmCore* aecm, |
- const uint16_t* dfa, |
- ComplexInt16* out, |
- const int16_t* lambda) { |
- int16_t i; |
- int16_t tmp16; |
- int32_t tmp32; |
- |
- int16_t randW16[PART_LEN]; |
- int16_t uReal[PART_LEN1]; |
- int16_t uImag[PART_LEN1]; |
- int32_t outLShift32; |
- int16_t noiseRShift16[PART_LEN1]; |
- |
- int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain; |
- int16_t minTrackShift; |
- |
- assert(shiftFromNearToNoise >= 0); |
- assert(shiftFromNearToNoise < 16); |
- |
- if (aecm->noiseEstCtr < 100) |
- { |
- // Track the minimum more quickly initially. |
- aecm->noiseEstCtr++; |
- minTrackShift = 6; |
- } else |
- { |
- minTrackShift = 9; |
- } |
- |
- // Estimate noise power. |
- for (i = 0; i < PART_LEN1; i++) |
- { |
- // Shift to the noise domain. |
- tmp32 = (int32_t)dfa[i]; |
- outLShift32 = tmp32 << shiftFromNearToNoise; |
- |
- if (outLShift32 < aecm->noiseEst[i]) |
- { |
- // Reset "too low" counter |
- aecm->noiseEstTooLowCtr[i] = 0; |
- // Track the minimum. |
- if (aecm->noiseEst[i] < (1 << minTrackShift)) |
- { |
- // For small values, decrease noiseEst[i] every |
- // |kNoiseEstIncCount| block. The regular approach below can not |
- // go further down due to truncation. |
- aecm->noiseEstTooHighCtr[i]++; |
- if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) |
- { |
- aecm->noiseEst[i]--; |
- aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter |
- } |
- } |
- else |
- { |
- aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32) |
- >> minTrackShift); |
- } |
- } else |
- { |
- // Reset "too high" counter |
- aecm->noiseEstTooHighCtr[i] = 0; |
- // Ramp slowly upwards until we hit the minimum again. |
- if ((aecm->noiseEst[i] >> 19) > 0) |
- { |
- // Avoid overflow. |
- // Multiplication with 2049 will cause wrap around. Scale |
- // down first and then multiply |
- aecm->noiseEst[i] >>= 11; |
- aecm->noiseEst[i] *= 2049; |
- } |
- else if ((aecm->noiseEst[i] >> 11) > 0) |
- { |
- // Large enough for relative increase |
- aecm->noiseEst[i] *= 2049; |
- aecm->noiseEst[i] >>= 11; |
- } |
- else |
- { |
- // Make incremental increases based on size every |
- // |kNoiseEstIncCount| block |
- aecm->noiseEstTooLowCtr[i]++; |
- if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) |
- { |
- aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1; |
- aecm->noiseEstTooLowCtr[i] = 0; // Reset counter |
- } |
- } |
- } |
- } |
- |
- for (i = 0; i < PART_LEN1; i++) |
- { |
- tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise; |
- if (tmp32 > 32767) |
- { |
- tmp32 = 32767; |
- aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise; |
- } |
- noiseRShift16[i] = (int16_t)tmp32; |
- |
- tmp16 = ONE_Q14 - lambda[i]; |
- noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14); |
- } |
- |
- // Generate a uniform random array on [0 2^15-1]. |
- WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed); |
- |
- // Generate noise according to estimated energy. |
- uReal[0] = 0; // Reject LF noise. |
- uImag[0] = 0; |
- for (i = 1; i < PART_LEN1; i++) |
- { |
- // Get a random index for the cos and sin tables over [0 359]. |
- tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15); |
- |
- // Tables are in Q13. |
- uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >> |
- 13); |
- uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >> |
- 13); |
- } |
- uImag[PART_LEN] = 0; |
- |
- for (i = 0; i < PART_LEN1; i++) |
- { |
- out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]); |
- out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]); |
- } |
-} |
- |