Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(507)

Side by Side Diff: webrtc/modules/audio_processing/aecm/aecm_core_c.c

Issue 1857153002: Changed AECM to be built using C++ (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Added external declaration to the delay estimator wrapper inclusion Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/aecm/aecm_core.h"
12
13 #include <assert.h>
14 #include <stddef.h>
15 #include <stdlib.h>
16
17 #include "webrtc/common_audio/ring_buffer.h"
18 #include "webrtc/common_audio/signal_processing/include/real_fft.h"
19 #include "webrtc/modules/audio_processing/aecm/echo_control_mobile.h"
20 #include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
21 #include "webrtc/system_wrappers/include/compile_assert_c.h"
22 #include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
23 #include "webrtc/typedefs.h"
24
25 // Square root of Hanning window in Q14.
26 #if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON)
27 // Table is defined in an ARM assembly file.
28 extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END;
29 #else
30 static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
31 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
32 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
33 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
34 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
35 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
36 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
37 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
38 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
39 };
40 #endif
41
42 #ifdef AECM_WITH_ABS_APPROX
43 //Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
44 static const uint16_t kAlpha1 = 32584;
45 //Q15 beta = 0.12967166976970 const Factor for magnitude approximation
46 static const uint16_t kBeta1 = 4249;
47 //Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
48 static const uint16_t kAlpha2 = 30879;
49 //Q15 beta = 0.33787806009150 const Factor for magnitude approximation
50 static const uint16_t kBeta2 = 11072;
51 //Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
52 static const uint16_t kAlpha3 = 26951;
53 //Q15 beta = 0.57762063060713 const Factor for magnitude approximation
54 static const uint16_t kBeta3 = 18927;
55 #endif
56
57 static const int16_t kNoiseEstQDomain = 15;
58 static const int16_t kNoiseEstIncCount = 5;
59
60 static void ComfortNoise(AecmCore* aecm,
61 const uint16_t* dfa,
62 ComplexInt16* out,
63 const int16_t* lambda);
64
65 static void WindowAndFFT(AecmCore* aecm,
66 int16_t* fft,
67 const int16_t* time_signal,
68 ComplexInt16* freq_signal,
69 int time_signal_scaling) {
70 int i = 0;
71
72 // FFT of signal
73 for (i = 0; i < PART_LEN; i++) {
74 // Window time domain signal and insert into real part of
75 // transformation array |fft|
76 int16_t scaled_time_signal = time_signal[i] << time_signal_scaling;
77 fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14);
78 scaled_time_signal = time_signal[i + PART_LEN] << time_signal_scaling;
79 fft[PART_LEN + i] = (int16_t)((
80 scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
81 }
82
83 // Do forward FFT, then take only the first PART_LEN complex samples,
84 // and change signs of the imaginary parts.
85 WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
86 for (i = 0; i < PART_LEN; i++) {
87 freq_signal[i].imag = -freq_signal[i].imag;
88 }
89 }
90
91 static void InverseFFTAndWindow(AecmCore* aecm,
92 int16_t* fft,
93 ComplexInt16* efw,
94 int16_t* output,
95 const int16_t* nearendClean) {
96 int i, j, outCFFT;
97 int32_t tmp32no1;
98 // Reuse |efw| for the inverse FFT output after transferring
99 // the contents to |fft|.
100 int16_t* ifft_out = (int16_t*)efw;
101
102 // Synthesis
103 for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
104 fft[j] = efw[i].real;
105 fft[j + 1] = -efw[i].imag;
106 }
107 fft[0] = efw[0].real;
108 fft[1] = -efw[0].imag;
109
110 fft[PART_LEN2] = efw[PART_LEN].real;
111 fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
112
113 // Inverse FFT. Keep outCFFT to scale the samples in the next block.
114 outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
115 for (i = 0; i < PART_LEN; i++) {
116 ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
117 ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
118 tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
119 outCFFT - aecm->dfaCleanQDomain);
120 output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
121 tmp32no1 + aecm->outBuf[i],
122 WEBRTC_SPL_WORD16_MIN);
123
124 tmp32no1 = (ifft_out[PART_LEN + i] *
125 WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
126 tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
127 outCFFT - aecm->dfaCleanQDomain);
128 aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
129 tmp32no1,
130 WEBRTC_SPL_WORD16_MIN);
131 }
132
133 // Copy the current block to the old position
134 // (aecm->outBuf is shifted elsewhere)
135 memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
136 memcpy(aecm->dBufNoisy,
137 aecm->dBufNoisy + PART_LEN,
138 sizeof(int16_t) * PART_LEN);
139 if (nearendClean != NULL)
140 {
141 memcpy(aecm->dBufClean,
142 aecm->dBufClean + PART_LEN,
143 sizeof(int16_t) * PART_LEN);
144 }
145 }
146
147 // Transforms a time domain signal into the frequency domain, outputting the
148 // complex valued signal, absolute value and sum of absolute values.
149 //
150 // time_signal [in] Pointer to time domain signal
151 // freq_signal_real [out] Pointer to real part of frequency domain array
152 // freq_signal_imag [out] Pointer to imaginary part of frequency domain
153 // array
154 // freq_signal_abs [out] Pointer to absolute value of frequency domain
155 // array
156 // freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
157 // the frequency domain array
158 // return value The Q-domain of current frequency values
159 //
160 static int TimeToFrequencyDomain(AecmCore* aecm,
161 const int16_t* time_signal,
162 ComplexInt16* freq_signal,
163 uint16_t* freq_signal_abs,
164 uint32_t* freq_signal_sum_abs) {
165 int i = 0;
166 int time_signal_scaling = 0;
167
168 int32_t tmp32no1 = 0;
169 int32_t tmp32no2 = 0;
170
171 // In fft_buf, +16 for 32-byte alignment.
172 int16_t fft_buf[PART_LEN4 + 16];
173 int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
174
175 int16_t tmp16no1;
176 #ifndef WEBRTC_ARCH_ARM_V7
177 int16_t tmp16no2;
178 #endif
179 #ifdef AECM_WITH_ABS_APPROX
180 int16_t max_value = 0;
181 int16_t min_value = 0;
182 uint16_t alpha = 0;
183 uint16_t beta = 0;
184 #endif
185
186 #ifdef AECM_DYNAMIC_Q
187 tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
188 time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
189 #endif
190
191 WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
192
193 // Extract imaginary and real part, calculate the magnitude for
194 // all frequency bins
195 freq_signal[0].imag = 0;
196 freq_signal[PART_LEN].imag = 0;
197 freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
198 freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
199 freq_signal[PART_LEN].real);
200 (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
201 (uint32_t)(freq_signal_abs[PART_LEN]);
202
203 for (i = 1; i < PART_LEN; i++)
204 {
205 if (freq_signal[i].real == 0)
206 {
207 freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
208 }
209 else if (freq_signal[i].imag == 0)
210 {
211 freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
212 }
213 else
214 {
215 // Approximation for magnitude of complex fft output
216 // magn = sqrt(real^2 + imag^2)
217 // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
218 //
219 // The parameters alpha and beta are stored in Q15
220
221 #ifdef AECM_WITH_ABS_APPROX
222 tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
223 tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
224
225 if(tmp16no1 > tmp16no2)
226 {
227 max_value = tmp16no1;
228 min_value = tmp16no2;
229 } else
230 {
231 max_value = tmp16no2;
232 min_value = tmp16no1;
233 }
234
235 // Magnitude in Q(-6)
236 if ((max_value >> 2) > min_value)
237 {
238 alpha = kAlpha1;
239 beta = kBeta1;
240 } else if ((max_value >> 1) > min_value)
241 {
242 alpha = kAlpha2;
243 beta = kBeta2;
244 } else
245 {
246 alpha = kAlpha3;
247 beta = kBeta3;
248 }
249 tmp16no1 = (int16_t)((max_value * alpha) >> 15);
250 tmp16no2 = (int16_t)((min_value * beta) >> 15);
251 freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2;
252 #else
253 #ifdef WEBRTC_ARCH_ARM_V7
254 __asm __volatile(
255 "smulbb %[tmp32no1], %[real], %[real]\n\t"
256 "smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
257 :[tmp32no1]"+&r"(tmp32no1),
258 [tmp32no2]"=r"(tmp32no2)
259 :[real]"r"(freq_signal[i].real),
260 [imag]"r"(freq_signal[i].imag)
261 );
262 #else
263 tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
264 tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
265 tmp32no1 = tmp16no1 * tmp16no1;
266 tmp32no2 = tmp16no2 * tmp16no2;
267 tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
268 #endif // WEBRTC_ARCH_ARM_V7
269 tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
270
271 freq_signal_abs[i] = (uint16_t)tmp32no1;
272 #endif // AECM_WITH_ABS_APPROX
273 }
274 (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
275 }
276
277 return time_signal_scaling;
278 }
279
280 int WebRtcAecm_ProcessBlock(AecmCore* aecm,
281 const int16_t* farend,
282 const int16_t* nearendNoisy,
283 const int16_t* nearendClean,
284 int16_t* output) {
285 int i;
286
287 uint32_t xfaSum;
288 uint32_t dfaNoisySum;
289 uint32_t dfaCleanSum;
290 uint32_t echoEst32Gained;
291 uint32_t tmpU32;
292
293 int32_t tmp32no1;
294
295 uint16_t xfa[PART_LEN1];
296 uint16_t dfaNoisy[PART_LEN1];
297 uint16_t dfaClean[PART_LEN1];
298 uint16_t* ptrDfaClean = dfaClean;
299 const uint16_t* far_spectrum_ptr = NULL;
300
301 // 32 byte aligned buffers (with +8 or +16).
302 // TODO(kma): define fft with ComplexInt16.
303 int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
304 int32_t echoEst32_buf[PART_LEN1 + 8];
305 int32_t dfw_buf[PART_LEN2 + 8];
306 int32_t efw_buf[PART_LEN2 + 8];
307
308 int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31);
309 int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
310 ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31);
311 ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31);
312
313 int16_t hnl[PART_LEN1];
314 int16_t numPosCoef = 0;
315 int16_t nlpGain = ONE_Q14;
316 int delay;
317 int16_t tmp16no1;
318 int16_t tmp16no2;
319 int16_t mu;
320 int16_t supGain;
321 int16_t zeros32, zeros16;
322 int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
323 int far_q;
324 int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff;
325
326 const int kMinPrefBand = 4;
327 const int kMaxPrefBand = 24;
328 int32_t avgHnl32 = 0;
329
330 // Determine startup state. There are three states:
331 // (0) the first CONV_LEN blocks
332 // (1) another CONV_LEN blocks
333 // (2) the rest
334
335 if (aecm->startupState < 2)
336 {
337 aecm->startupState = (aecm->totCount >= CONV_LEN) +
338 (aecm->totCount >= CONV_LEN2);
339 }
340 // END: Determine startup state
341
342 // Buffer near and far end signals
343 memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
344 memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
345 if (nearendClean != NULL)
346 {
347 memcpy(aecm->dBufClean + PART_LEN,
348 nearendClean,
349 sizeof(int16_t) * PART_LEN);
350 }
351
352 // Transform far end signal from time domain to frequency domain.
353 far_q = TimeToFrequencyDomain(aecm,
354 aecm->xBuf,
355 dfw,
356 xfa,
357 &xfaSum);
358
359 // Transform noisy near end signal from time domain to frequency domain.
360 zerosDBufNoisy = TimeToFrequencyDomain(aecm,
361 aecm->dBufNoisy,
362 dfw,
363 dfaNoisy,
364 &dfaNoisySum);
365 aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
366 aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
367
368
369 if (nearendClean == NULL)
370 {
371 ptrDfaClean = dfaNoisy;
372 aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
373 aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
374 dfaCleanSum = dfaNoisySum;
375 } else
376 {
377 // Transform clean near end signal from time domain to frequency domain.
378 zerosDBufClean = TimeToFrequencyDomain(aecm,
379 aecm->dBufClean,
380 dfw,
381 dfaClean,
382 &dfaCleanSum);
383 aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
384 aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
385 }
386
387 // Get the delay
388 // Save far-end history and estimate delay
389 WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
390 if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend,
391 xfa,
392 PART_LEN1,
393 far_q) == -1) {
394 return -1;
395 }
396 delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
397 dfaNoisy,
398 PART_LEN1,
399 zerosDBufNoisy);
400 if (delay == -1)
401 {
402 return -1;
403 }
404 else if (delay == -2)
405 {
406 // If the delay is unknown, we assume zero.
407 // NOTE: this will have to be adjusted if we ever add lookahead.
408 delay = 0;
409 }
410
411 if (aecm->fixedDelay >= 0)
412 {
413 // Use fixed delay
414 delay = aecm->fixedDelay;
415 }
416
417 // Get aligned far end spectrum
418 far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
419 zerosXBuf = (int16_t) far_q;
420 if (far_spectrum_ptr == NULL)
421 {
422 return -1;
423 }
424
425 // Calculate log(energy) and update energy threshold levels
426 WebRtcAecm_CalcEnergies(aecm,
427 far_spectrum_ptr,
428 zerosXBuf,
429 dfaNoisySum,
430 echoEst32);
431
432 // Calculate stepsize
433 mu = WebRtcAecm_CalcStepSize(aecm);
434
435 // Update counters
436 aecm->totCount++;
437
438 // This is the channel estimation algorithm.
439 // It is base on NLMS but has a variable step length,
440 // which was calculated above.
441 WebRtcAecm_UpdateChannel(aecm,
442 far_spectrum_ptr,
443 zerosXBuf,
444 dfaNoisy,
445 mu,
446 echoEst32);
447 supGain = WebRtcAecm_CalcSuppressionGain(aecm);
448
449
450 // Calculate Wiener filter hnl[]
451 for (i = 0; i < PART_LEN1; i++)
452 {
453 // Far end signal through channel estimate in Q8
454 // How much can we shift right to preserve resolution
455 tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
456 aecm->echoFilt[i] += (tmp32no1 * 50) >> 8;
457
458 zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
459 zeros16 = WebRtcSpl_NormW16(supGain) + 1;
460 if (zeros32 + zeros16 > 16)
461 {
462 // Multiplication is safe
463 // Result in
464 // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
465 // aecm->xfaQDomainBuf[diff])
466 echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
467 (uint16_t)supGain);
468 resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
469 resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
470 } else
471 {
472 tmp16no1 = 17 - zeros32 - zeros16;
473 resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
474 RESOLUTION_SUPGAIN;
475 resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
476 if (zeros32 > tmp16no1)
477 {
478 echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
479 supGain >> tmp16no1);
480 } else
481 {
482 // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
483 echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
484 }
485 }
486
487 zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
488 assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative.
489 dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
490 if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
491 tmp16no1 = aecm->nearFilt[i] << zeros16;
492 qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
493 tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
494 } else {
495 tmp16no1 = dfa_clean_q_domain_diff < 0
496 ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
497 : aecm->nearFilt[i] << dfa_clean_q_domain_diff;
498 qDomainDiff = 0;
499 tmp16no2 = ptrDfaClean[i];
500 }
501 tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
502 tmp16no2 = (int16_t)(tmp32no1 >> 4);
503 tmp16no2 += tmp16no1;
504 zeros16 = WebRtcSpl_NormW16(tmp16no2);
505 if ((tmp16no2) & (-qDomainDiff > zeros16)) {
506 aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
507 } else {
508 aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff
509 : tmp16no2 >> qDomainDiff;
510 }
511
512 // Wiener filter coefficients, resulting hnl in Q14
513 if (echoEst32Gained == 0)
514 {
515 hnl[i] = ONE_Q14;
516 } else if (aecm->nearFilt[i] == 0)
517 {
518 hnl[i] = 0;
519 } else
520 {
521 // Multiply the suppression gain
522 // Rounding
523 echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
524 tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
525 (uint16_t)aecm->nearFilt[i]);
526
527 // Current resolution is
528 // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
529 // Make sure we are in Q14
530 tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
531 if (tmp32no1 > ONE_Q14)
532 {
533 hnl[i] = 0;
534 } else if (tmp32no1 < 0)
535 {
536 hnl[i] = ONE_Q14;
537 } else
538 {
539 // 1-echoEst/dfa
540 hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
541 if (hnl[i] < 0)
542 {
543 hnl[i] = 0;
544 }
545 }
546 }
547 if (hnl[i])
548 {
549 numPosCoef++;
550 }
551 }
552 // Only in wideband. Prevent the gain in upper band from being larger than
553 // in lower band.
554 if (aecm->mult == 2)
555 {
556 // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
557 // speech distortion in double-talk.
558 for (i = 0; i < PART_LEN1; i++)
559 {
560 hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14);
561 }
562
563 for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
564 {
565 avgHnl32 += (int32_t)hnl[i];
566 }
567 assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
568 avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
569
570 for (i = kMaxPrefBand; i < PART_LEN1; i++)
571 {
572 if (hnl[i] > (int16_t)avgHnl32)
573 {
574 hnl[i] = (int16_t)avgHnl32;
575 }
576 }
577 }
578
579 // Calculate NLP gain, result is in Q14
580 if (aecm->nlpFlag)
581 {
582 for (i = 0; i < PART_LEN1; i++)
583 {
584 // Truncate values close to zero and one.
585 if (hnl[i] > NLP_COMP_HIGH)
586 {
587 hnl[i] = ONE_Q14;
588 } else if (hnl[i] < NLP_COMP_LOW)
589 {
590 hnl[i] = 0;
591 }
592
593 // Remove outliers
594 if (numPosCoef < 3)
595 {
596 nlpGain = 0;
597 } else
598 {
599 nlpGain = ONE_Q14;
600 }
601
602 // NLP
603 if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
604 {
605 hnl[i] = ONE_Q14;
606 } else
607 {
608 hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14);
609 }
610
611 // multiply with Wiener coefficients
612 efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
613 hnl[i], 14));
614 efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
615 hnl[i], 14));
616 }
617 }
618 else
619 {
620 // multiply with Wiener coefficients
621 for (i = 0; i < PART_LEN1; i++)
622 {
623 efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
624 hnl[i], 14));
625 efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
626 hnl[i], 14));
627 }
628 }
629
630 if (aecm->cngMode == AecmTrue)
631 {
632 ComfortNoise(aecm, ptrDfaClean, efw, hnl);
633 }
634
635 InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
636
637 return 0;
638 }
639
640 static void ComfortNoise(AecmCore* aecm,
641 const uint16_t* dfa,
642 ComplexInt16* out,
643 const int16_t* lambda) {
644 int16_t i;
645 int16_t tmp16;
646 int32_t tmp32;
647
648 int16_t randW16[PART_LEN];
649 int16_t uReal[PART_LEN1];
650 int16_t uImag[PART_LEN1];
651 int32_t outLShift32;
652 int16_t noiseRShift16[PART_LEN1];
653
654 int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
655 int16_t minTrackShift;
656
657 assert(shiftFromNearToNoise >= 0);
658 assert(shiftFromNearToNoise < 16);
659
660 if (aecm->noiseEstCtr < 100)
661 {
662 // Track the minimum more quickly initially.
663 aecm->noiseEstCtr++;
664 minTrackShift = 6;
665 } else
666 {
667 minTrackShift = 9;
668 }
669
670 // Estimate noise power.
671 for (i = 0; i < PART_LEN1; i++)
672 {
673 // Shift to the noise domain.
674 tmp32 = (int32_t)dfa[i];
675 outLShift32 = tmp32 << shiftFromNearToNoise;
676
677 if (outLShift32 < aecm->noiseEst[i])
678 {
679 // Reset "too low" counter
680 aecm->noiseEstTooLowCtr[i] = 0;
681 // Track the minimum.
682 if (aecm->noiseEst[i] < (1 << minTrackShift))
683 {
684 // For small values, decrease noiseEst[i] every
685 // |kNoiseEstIncCount| block. The regular approach below can not
686 // go further down due to truncation.
687 aecm->noiseEstTooHighCtr[i]++;
688 if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
689 {
690 aecm->noiseEst[i]--;
691 aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
692 }
693 }
694 else
695 {
696 aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32)
697 >> minTrackShift);
698 }
699 } else
700 {
701 // Reset "too high" counter
702 aecm->noiseEstTooHighCtr[i] = 0;
703 // Ramp slowly upwards until we hit the minimum again.
704 if ((aecm->noiseEst[i] >> 19) > 0)
705 {
706 // Avoid overflow.
707 // Multiplication with 2049 will cause wrap around. Scale
708 // down first and then multiply
709 aecm->noiseEst[i] >>= 11;
710 aecm->noiseEst[i] *= 2049;
711 }
712 else if ((aecm->noiseEst[i] >> 11) > 0)
713 {
714 // Large enough for relative increase
715 aecm->noiseEst[i] *= 2049;
716 aecm->noiseEst[i] >>= 11;
717 }
718 else
719 {
720 // Make incremental increases based on size every
721 // |kNoiseEstIncCount| block
722 aecm->noiseEstTooLowCtr[i]++;
723 if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
724 {
725 aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
726 aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
727 }
728 }
729 }
730 }
731
732 for (i = 0; i < PART_LEN1; i++)
733 {
734 tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
735 if (tmp32 > 32767)
736 {
737 tmp32 = 32767;
738 aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
739 }
740 noiseRShift16[i] = (int16_t)tmp32;
741
742 tmp16 = ONE_Q14 - lambda[i];
743 noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14);
744 }
745
746 // Generate a uniform random array on [0 2^15-1].
747 WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
748
749 // Generate noise according to estimated energy.
750 uReal[0] = 0; // Reject LF noise.
751 uImag[0] = 0;
752 for (i = 1; i < PART_LEN1; i++)
753 {
754 // Get a random index for the cos and sin tables over [0 359].
755 tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15);
756
757 // Tables are in Q13.
758 uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >>
759 13);
760 uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >>
761 13);
762 }
763 uImag[PART_LEN] = 0;
764
765 for (i = 0; i < PART_LEN1; i++)
766 {
767 out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
768 out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
769 }
770 }
771
OLDNEW
« no previous file with comments | « webrtc/modules/audio_processing/aecm/aecm_core.cc ('k') | webrtc/modules/audio_processing/aecm/aecm_core_c.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698