OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 #include "webrtc/modules/audio_processing/aecm/aecm_core.h" | |
12 | |
13 #include <assert.h> | |
14 #include <stddef.h> | |
15 #include <stdlib.h> | |
16 | |
17 #include "webrtc/common_audio/ring_buffer.h" | |
18 #include "webrtc/common_audio/signal_processing/include/real_fft.h" | |
19 #include "webrtc/modules/audio_processing/aecm/echo_control_mobile.h" | |
20 #include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h" | |
21 #include "webrtc/system_wrappers/include/compile_assert_c.h" | |
22 #include "webrtc/system_wrappers/include/cpu_features_wrapper.h" | |
23 #include "webrtc/typedefs.h" | |
24 | |
25 // Square root of Hanning window in Q14. | |
26 #if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON) | |
27 // Table is defined in an ARM assembly file. | |
28 extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END; | |
29 #else | |
30 static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = { | |
31 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, | |
32 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224, | |
33 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040, | |
34 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514, | |
35 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, | |
36 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079, | |
37 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034, | |
38 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384 | |
39 }; | |
40 #endif | |
41 | |
42 #ifdef AECM_WITH_ABS_APPROX | |
43 //Q15 alpha = 0.99439986968132 const Factor for magnitude approximation | |
44 static const uint16_t kAlpha1 = 32584; | |
45 //Q15 beta = 0.12967166976970 const Factor for magnitude approximation | |
46 static const uint16_t kBeta1 = 4249; | |
47 //Q15 alpha = 0.94234827210087 const Factor for magnitude approximation | |
48 static const uint16_t kAlpha2 = 30879; | |
49 //Q15 beta = 0.33787806009150 const Factor for magnitude approximation | |
50 static const uint16_t kBeta2 = 11072; | |
51 //Q15 alpha = 0.82247698684306 const Factor for magnitude approximation | |
52 static const uint16_t kAlpha3 = 26951; | |
53 //Q15 beta = 0.57762063060713 const Factor for magnitude approximation | |
54 static const uint16_t kBeta3 = 18927; | |
55 #endif | |
56 | |
57 static const int16_t kNoiseEstQDomain = 15; | |
58 static const int16_t kNoiseEstIncCount = 5; | |
59 | |
60 static void ComfortNoise(AecmCore* aecm, | |
61 const uint16_t* dfa, | |
62 ComplexInt16* out, | |
63 const int16_t* lambda); | |
64 | |
65 static void WindowAndFFT(AecmCore* aecm, | |
66 int16_t* fft, | |
67 const int16_t* time_signal, | |
68 ComplexInt16* freq_signal, | |
69 int time_signal_scaling) { | |
70 int i = 0; | |
71 | |
72 // FFT of signal | |
73 for (i = 0; i < PART_LEN; i++) { | |
74 // Window time domain signal and insert into real part of | |
75 // transformation array |fft| | |
76 int16_t scaled_time_signal = time_signal[i] << time_signal_scaling; | |
77 fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14); | |
78 scaled_time_signal = time_signal[i + PART_LEN] << time_signal_scaling; | |
79 fft[PART_LEN + i] = (int16_t)(( | |
80 scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14); | |
81 } | |
82 | |
83 // Do forward FFT, then take only the first PART_LEN complex samples, | |
84 // and change signs of the imaginary parts. | |
85 WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal); | |
86 for (i = 0; i < PART_LEN; i++) { | |
87 freq_signal[i].imag = -freq_signal[i].imag; | |
88 } | |
89 } | |
90 | |
91 static void InverseFFTAndWindow(AecmCore* aecm, | |
92 int16_t* fft, | |
93 ComplexInt16* efw, | |
94 int16_t* output, | |
95 const int16_t* nearendClean) { | |
96 int i, j, outCFFT; | |
97 int32_t tmp32no1; | |
98 // Reuse |efw| for the inverse FFT output after transferring | |
99 // the contents to |fft|. | |
100 int16_t* ifft_out = (int16_t*)efw; | |
101 | |
102 // Synthesis | |
103 for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) { | |
104 fft[j] = efw[i].real; | |
105 fft[j + 1] = -efw[i].imag; | |
106 } | |
107 fft[0] = efw[0].real; | |
108 fft[1] = -efw[0].imag; | |
109 | |
110 fft[PART_LEN2] = efw[PART_LEN].real; | |
111 fft[PART_LEN2 + 1] = -efw[PART_LEN].imag; | |
112 | |
113 // Inverse FFT. Keep outCFFT to scale the samples in the next block. | |
114 outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out); | |
115 for (i = 0; i < PART_LEN; i++) { | |
116 ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( | |
117 ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14); | |
118 tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i], | |
119 outCFFT - aecm->dfaCleanQDomain); | |
120 output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, | |
121 tmp32no1 + aecm->outBuf[i], | |
122 WEBRTC_SPL_WORD16_MIN); | |
123 | |
124 tmp32no1 = (ifft_out[PART_LEN + i] * | |
125 WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14; | |
126 tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, | |
127 outCFFT - aecm->dfaCleanQDomain); | |
128 aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, | |
129 tmp32no1, | |
130 WEBRTC_SPL_WORD16_MIN); | |
131 } | |
132 | |
133 // Copy the current block to the old position | |
134 // (aecm->outBuf is shifted elsewhere) | |
135 memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN); | |
136 memcpy(aecm->dBufNoisy, | |
137 aecm->dBufNoisy + PART_LEN, | |
138 sizeof(int16_t) * PART_LEN); | |
139 if (nearendClean != NULL) | |
140 { | |
141 memcpy(aecm->dBufClean, | |
142 aecm->dBufClean + PART_LEN, | |
143 sizeof(int16_t) * PART_LEN); | |
144 } | |
145 } | |
146 | |
147 // Transforms a time domain signal into the frequency domain, outputting the | |
148 // complex valued signal, absolute value and sum of absolute values. | |
149 // | |
150 // time_signal [in] Pointer to time domain signal | |
151 // freq_signal_real [out] Pointer to real part of frequency domain array | |
152 // freq_signal_imag [out] Pointer to imaginary part of frequency domain | |
153 // array | |
154 // freq_signal_abs [out] Pointer to absolute value of frequency domain | |
155 // array | |
156 // freq_signal_sum_abs [out] Pointer to the sum of all absolute values in | |
157 // the frequency domain array | |
158 // return value The Q-domain of current frequency values | |
159 // | |
160 static int TimeToFrequencyDomain(AecmCore* aecm, | |
161 const int16_t* time_signal, | |
162 ComplexInt16* freq_signal, | |
163 uint16_t* freq_signal_abs, | |
164 uint32_t* freq_signal_sum_abs) { | |
165 int i = 0; | |
166 int time_signal_scaling = 0; | |
167 | |
168 int32_t tmp32no1 = 0; | |
169 int32_t tmp32no2 = 0; | |
170 | |
171 // In fft_buf, +16 for 32-byte alignment. | |
172 int16_t fft_buf[PART_LEN4 + 16]; | |
173 int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31); | |
174 | |
175 int16_t tmp16no1; | |
176 #ifndef WEBRTC_ARCH_ARM_V7 | |
177 int16_t tmp16no2; | |
178 #endif | |
179 #ifdef AECM_WITH_ABS_APPROX | |
180 int16_t max_value = 0; | |
181 int16_t min_value = 0; | |
182 uint16_t alpha = 0; | |
183 uint16_t beta = 0; | |
184 #endif | |
185 | |
186 #ifdef AECM_DYNAMIC_Q | |
187 tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2); | |
188 time_signal_scaling = WebRtcSpl_NormW16(tmp16no1); | |
189 #endif | |
190 | |
191 WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling); | |
192 | |
193 // Extract imaginary and real part, calculate the magnitude for | |
194 // all frequency bins | |
195 freq_signal[0].imag = 0; | |
196 freq_signal[PART_LEN].imag = 0; | |
197 freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real); | |
198 freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16( | |
199 freq_signal[PART_LEN].real); | |
200 (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) + | |
201 (uint32_t)(freq_signal_abs[PART_LEN]); | |
202 | |
203 for (i = 1; i < PART_LEN; i++) | |
204 { | |
205 if (freq_signal[i].real == 0) | |
206 { | |
207 freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag); | |
208 } | |
209 else if (freq_signal[i].imag == 0) | |
210 { | |
211 freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real); | |
212 } | |
213 else | |
214 { | |
215 // Approximation for magnitude of complex fft output | |
216 // magn = sqrt(real^2 + imag^2) | |
217 // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|) | |
218 // | |
219 // The parameters alpha and beta are stored in Q15 | |
220 | |
221 #ifdef AECM_WITH_ABS_APPROX | |
222 tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); | |
223 tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); | |
224 | |
225 if(tmp16no1 > tmp16no2) | |
226 { | |
227 max_value = tmp16no1; | |
228 min_value = tmp16no2; | |
229 } else | |
230 { | |
231 max_value = tmp16no2; | |
232 min_value = tmp16no1; | |
233 } | |
234 | |
235 // Magnitude in Q(-6) | |
236 if ((max_value >> 2) > min_value) | |
237 { | |
238 alpha = kAlpha1; | |
239 beta = kBeta1; | |
240 } else if ((max_value >> 1) > min_value) | |
241 { | |
242 alpha = kAlpha2; | |
243 beta = kBeta2; | |
244 } else | |
245 { | |
246 alpha = kAlpha3; | |
247 beta = kBeta3; | |
248 } | |
249 tmp16no1 = (int16_t)((max_value * alpha) >> 15); | |
250 tmp16no2 = (int16_t)((min_value * beta) >> 15); | |
251 freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2; | |
252 #else | |
253 #ifdef WEBRTC_ARCH_ARM_V7 | |
254 __asm __volatile( | |
255 "smulbb %[tmp32no1], %[real], %[real]\n\t" | |
256 "smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t" | |
257 :[tmp32no1]"+&r"(tmp32no1), | |
258 [tmp32no2]"=r"(tmp32no2) | |
259 :[real]"r"(freq_signal[i].real), | |
260 [imag]"r"(freq_signal[i].imag) | |
261 ); | |
262 #else | |
263 tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); | |
264 tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); | |
265 tmp32no1 = tmp16no1 * tmp16no1; | |
266 tmp32no2 = tmp16no2 * tmp16no2; | |
267 tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2); | |
268 #endif // WEBRTC_ARCH_ARM_V7 | |
269 tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2); | |
270 | |
271 freq_signal_abs[i] = (uint16_t)tmp32no1; | |
272 #endif // AECM_WITH_ABS_APPROX | |
273 } | |
274 (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i]; | |
275 } | |
276 | |
277 return time_signal_scaling; | |
278 } | |
279 | |
280 int WebRtcAecm_ProcessBlock(AecmCore* aecm, | |
281 const int16_t* farend, | |
282 const int16_t* nearendNoisy, | |
283 const int16_t* nearendClean, | |
284 int16_t* output) { | |
285 int i; | |
286 | |
287 uint32_t xfaSum; | |
288 uint32_t dfaNoisySum; | |
289 uint32_t dfaCleanSum; | |
290 uint32_t echoEst32Gained; | |
291 uint32_t tmpU32; | |
292 | |
293 int32_t tmp32no1; | |
294 | |
295 uint16_t xfa[PART_LEN1]; | |
296 uint16_t dfaNoisy[PART_LEN1]; | |
297 uint16_t dfaClean[PART_LEN1]; | |
298 uint16_t* ptrDfaClean = dfaClean; | |
299 const uint16_t* far_spectrum_ptr = NULL; | |
300 | |
301 // 32 byte aligned buffers (with +8 or +16). | |
302 // TODO(kma): define fft with ComplexInt16. | |
303 int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe. | |
304 int32_t echoEst32_buf[PART_LEN1 + 8]; | |
305 int32_t dfw_buf[PART_LEN2 + 8]; | |
306 int32_t efw_buf[PART_LEN2 + 8]; | |
307 | |
308 int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31); | |
309 int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31); | |
310 ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31); | |
311 ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31); | |
312 | |
313 int16_t hnl[PART_LEN1]; | |
314 int16_t numPosCoef = 0; | |
315 int16_t nlpGain = ONE_Q14; | |
316 int delay; | |
317 int16_t tmp16no1; | |
318 int16_t tmp16no2; | |
319 int16_t mu; | |
320 int16_t supGain; | |
321 int16_t zeros32, zeros16; | |
322 int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf; | |
323 int far_q; | |
324 int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff; | |
325 | |
326 const int kMinPrefBand = 4; | |
327 const int kMaxPrefBand = 24; | |
328 int32_t avgHnl32 = 0; | |
329 | |
330 // Determine startup state. There are three states: | |
331 // (0) the first CONV_LEN blocks | |
332 // (1) another CONV_LEN blocks | |
333 // (2) the rest | |
334 | |
335 if (aecm->startupState < 2) | |
336 { | |
337 aecm->startupState = (aecm->totCount >= CONV_LEN) + | |
338 (aecm->totCount >= CONV_LEN2); | |
339 } | |
340 // END: Determine startup state | |
341 | |
342 // Buffer near and far end signals | |
343 memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN); | |
344 memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN); | |
345 if (nearendClean != NULL) | |
346 { | |
347 memcpy(aecm->dBufClean + PART_LEN, | |
348 nearendClean, | |
349 sizeof(int16_t) * PART_LEN); | |
350 } | |
351 | |
352 // Transform far end signal from time domain to frequency domain. | |
353 far_q = TimeToFrequencyDomain(aecm, | |
354 aecm->xBuf, | |
355 dfw, | |
356 xfa, | |
357 &xfaSum); | |
358 | |
359 // Transform noisy near end signal from time domain to frequency domain. | |
360 zerosDBufNoisy = TimeToFrequencyDomain(aecm, | |
361 aecm->dBufNoisy, | |
362 dfw, | |
363 dfaNoisy, | |
364 &dfaNoisySum); | |
365 aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain; | |
366 aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy; | |
367 | |
368 | |
369 if (nearendClean == NULL) | |
370 { | |
371 ptrDfaClean = dfaNoisy; | |
372 aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld; | |
373 aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain; | |
374 dfaCleanSum = dfaNoisySum; | |
375 } else | |
376 { | |
377 // Transform clean near end signal from time domain to frequency domain. | |
378 zerosDBufClean = TimeToFrequencyDomain(aecm, | |
379 aecm->dBufClean, | |
380 dfw, | |
381 dfaClean, | |
382 &dfaCleanSum); | |
383 aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain; | |
384 aecm->dfaCleanQDomain = (int16_t)zerosDBufClean; | |
385 } | |
386 | |
387 // Get the delay | |
388 // Save far-end history and estimate delay | |
389 WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q); | |
390 if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, | |
391 xfa, | |
392 PART_LEN1, | |
393 far_q) == -1) { | |
394 return -1; | |
395 } | |
396 delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, | |
397 dfaNoisy, | |
398 PART_LEN1, | |
399 zerosDBufNoisy); | |
400 if (delay == -1) | |
401 { | |
402 return -1; | |
403 } | |
404 else if (delay == -2) | |
405 { | |
406 // If the delay is unknown, we assume zero. | |
407 // NOTE: this will have to be adjusted if we ever add lookahead. | |
408 delay = 0; | |
409 } | |
410 | |
411 if (aecm->fixedDelay >= 0) | |
412 { | |
413 // Use fixed delay | |
414 delay = aecm->fixedDelay; | |
415 } | |
416 | |
417 // Get aligned far end spectrum | |
418 far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay); | |
419 zerosXBuf = (int16_t) far_q; | |
420 if (far_spectrum_ptr == NULL) | |
421 { | |
422 return -1; | |
423 } | |
424 | |
425 // Calculate log(energy) and update energy threshold levels | |
426 WebRtcAecm_CalcEnergies(aecm, | |
427 far_spectrum_ptr, | |
428 zerosXBuf, | |
429 dfaNoisySum, | |
430 echoEst32); | |
431 | |
432 // Calculate stepsize | |
433 mu = WebRtcAecm_CalcStepSize(aecm); | |
434 | |
435 // Update counters | |
436 aecm->totCount++; | |
437 | |
438 // This is the channel estimation algorithm. | |
439 // It is base on NLMS but has a variable step length, | |
440 // which was calculated above. | |
441 WebRtcAecm_UpdateChannel(aecm, | |
442 far_spectrum_ptr, | |
443 zerosXBuf, | |
444 dfaNoisy, | |
445 mu, | |
446 echoEst32); | |
447 supGain = WebRtcAecm_CalcSuppressionGain(aecm); | |
448 | |
449 | |
450 // Calculate Wiener filter hnl[] | |
451 for (i = 0; i < PART_LEN1; i++) | |
452 { | |
453 // Far end signal through channel estimate in Q8 | |
454 // How much can we shift right to preserve resolution | |
455 tmp32no1 = echoEst32[i] - aecm->echoFilt[i]; | |
456 aecm->echoFilt[i] += (tmp32no1 * 50) >> 8; | |
457 | |
458 zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1; | |
459 zeros16 = WebRtcSpl_NormW16(supGain) + 1; | |
460 if (zeros32 + zeros16 > 16) | |
461 { | |
462 // Multiplication is safe | |
463 // Result in | |
464 // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+ | |
465 // aecm->xfaQDomainBuf[diff]) | |
466 echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], | |
467 (uint16_t)supGain); | |
468 resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN; | |
469 resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); | |
470 } else | |
471 { | |
472 tmp16no1 = 17 - zeros32 - zeros16; | |
473 resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 - | |
474 RESOLUTION_SUPGAIN; | |
475 resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); | |
476 if (zeros32 > tmp16no1) | |
477 { | |
478 echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], | |
479 supGain >> tmp16no1); | |
480 } else | |
481 { | |
482 // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16) | |
483 echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain; | |
484 } | |
485 } | |
486 | |
487 zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]); | |
488 assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative. | |
489 dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld; | |
490 if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) { | |
491 tmp16no1 = aecm->nearFilt[i] << zeros16; | |
492 qDomainDiff = zeros16 - dfa_clean_q_domain_diff; | |
493 tmp16no2 = ptrDfaClean[i] >> -qDomainDiff; | |
494 } else { | |
495 tmp16no1 = dfa_clean_q_domain_diff < 0 | |
496 ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff | |
497 : aecm->nearFilt[i] << dfa_clean_q_domain_diff; | |
498 qDomainDiff = 0; | |
499 tmp16no2 = ptrDfaClean[i]; | |
500 } | |
501 tmp32no1 = (int32_t)(tmp16no2 - tmp16no1); | |
502 tmp16no2 = (int16_t)(tmp32no1 >> 4); | |
503 tmp16no2 += tmp16no1; | |
504 zeros16 = WebRtcSpl_NormW16(tmp16no2); | |
505 if ((tmp16no2) & (-qDomainDiff > zeros16)) { | |
506 aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX; | |
507 } else { | |
508 aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff | |
509 : tmp16no2 >> qDomainDiff; | |
510 } | |
511 | |
512 // Wiener filter coefficients, resulting hnl in Q14 | |
513 if (echoEst32Gained == 0) | |
514 { | |
515 hnl[i] = ONE_Q14; | |
516 } else if (aecm->nearFilt[i] == 0) | |
517 { | |
518 hnl[i] = 0; | |
519 } else | |
520 { | |
521 // Multiply the suppression gain | |
522 // Rounding | |
523 echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1); | |
524 tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained, | |
525 (uint16_t)aecm->nearFilt[i]); | |
526 | |
527 // Current resolution is | |
528 // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32)) | |
529 // Make sure we are in Q14 | |
530 tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff); | |
531 if (tmp32no1 > ONE_Q14) | |
532 { | |
533 hnl[i] = 0; | |
534 } else if (tmp32no1 < 0) | |
535 { | |
536 hnl[i] = ONE_Q14; | |
537 } else | |
538 { | |
539 // 1-echoEst/dfa | |
540 hnl[i] = ONE_Q14 - (int16_t)tmp32no1; | |
541 if (hnl[i] < 0) | |
542 { | |
543 hnl[i] = 0; | |
544 } | |
545 } | |
546 } | |
547 if (hnl[i]) | |
548 { | |
549 numPosCoef++; | |
550 } | |
551 } | |
552 // Only in wideband. Prevent the gain in upper band from being larger than | |
553 // in lower band. | |
554 if (aecm->mult == 2) | |
555 { | |
556 // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause | |
557 // speech distortion in double-talk. | |
558 for (i = 0; i < PART_LEN1; i++) | |
559 { | |
560 hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14); | |
561 } | |
562 | |
563 for (i = kMinPrefBand; i <= kMaxPrefBand; i++) | |
564 { | |
565 avgHnl32 += (int32_t)hnl[i]; | |
566 } | |
567 assert(kMaxPrefBand - kMinPrefBand + 1 > 0); | |
568 avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1); | |
569 | |
570 for (i = kMaxPrefBand; i < PART_LEN1; i++) | |
571 { | |
572 if (hnl[i] > (int16_t)avgHnl32) | |
573 { | |
574 hnl[i] = (int16_t)avgHnl32; | |
575 } | |
576 } | |
577 } | |
578 | |
579 // Calculate NLP gain, result is in Q14 | |
580 if (aecm->nlpFlag) | |
581 { | |
582 for (i = 0; i < PART_LEN1; i++) | |
583 { | |
584 // Truncate values close to zero and one. | |
585 if (hnl[i] > NLP_COMP_HIGH) | |
586 { | |
587 hnl[i] = ONE_Q14; | |
588 } else if (hnl[i] < NLP_COMP_LOW) | |
589 { | |
590 hnl[i] = 0; | |
591 } | |
592 | |
593 // Remove outliers | |
594 if (numPosCoef < 3) | |
595 { | |
596 nlpGain = 0; | |
597 } else | |
598 { | |
599 nlpGain = ONE_Q14; | |
600 } | |
601 | |
602 // NLP | |
603 if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14)) | |
604 { | |
605 hnl[i] = ONE_Q14; | |
606 } else | |
607 { | |
608 hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14); | |
609 } | |
610 | |
611 // multiply with Wiener coefficients | |
612 efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, | |
613 hnl[i], 14)); | |
614 efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, | |
615 hnl[i], 14)); | |
616 } | |
617 } | |
618 else | |
619 { | |
620 // multiply with Wiener coefficients | |
621 for (i = 0; i < PART_LEN1; i++) | |
622 { | |
623 efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, | |
624 hnl[i], 14)); | |
625 efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, | |
626 hnl[i], 14)); | |
627 } | |
628 } | |
629 | |
630 if (aecm->cngMode == AecmTrue) | |
631 { | |
632 ComfortNoise(aecm, ptrDfaClean, efw, hnl); | |
633 } | |
634 | |
635 InverseFFTAndWindow(aecm, fft, efw, output, nearendClean); | |
636 | |
637 return 0; | |
638 } | |
639 | |
640 static void ComfortNoise(AecmCore* aecm, | |
641 const uint16_t* dfa, | |
642 ComplexInt16* out, | |
643 const int16_t* lambda) { | |
644 int16_t i; | |
645 int16_t tmp16; | |
646 int32_t tmp32; | |
647 | |
648 int16_t randW16[PART_LEN]; | |
649 int16_t uReal[PART_LEN1]; | |
650 int16_t uImag[PART_LEN1]; | |
651 int32_t outLShift32; | |
652 int16_t noiseRShift16[PART_LEN1]; | |
653 | |
654 int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain; | |
655 int16_t minTrackShift; | |
656 | |
657 assert(shiftFromNearToNoise >= 0); | |
658 assert(shiftFromNearToNoise < 16); | |
659 | |
660 if (aecm->noiseEstCtr < 100) | |
661 { | |
662 // Track the minimum more quickly initially. | |
663 aecm->noiseEstCtr++; | |
664 minTrackShift = 6; | |
665 } else | |
666 { | |
667 minTrackShift = 9; | |
668 } | |
669 | |
670 // Estimate noise power. | |
671 for (i = 0; i < PART_LEN1; i++) | |
672 { | |
673 // Shift to the noise domain. | |
674 tmp32 = (int32_t)dfa[i]; | |
675 outLShift32 = tmp32 << shiftFromNearToNoise; | |
676 | |
677 if (outLShift32 < aecm->noiseEst[i]) | |
678 { | |
679 // Reset "too low" counter | |
680 aecm->noiseEstTooLowCtr[i] = 0; | |
681 // Track the minimum. | |
682 if (aecm->noiseEst[i] < (1 << minTrackShift)) | |
683 { | |
684 // For small values, decrease noiseEst[i] every | |
685 // |kNoiseEstIncCount| block. The regular approach below can not | |
686 // go further down due to truncation. | |
687 aecm->noiseEstTooHighCtr[i]++; | |
688 if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) | |
689 { | |
690 aecm->noiseEst[i]--; | |
691 aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter | |
692 } | |
693 } | |
694 else | |
695 { | |
696 aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32) | |
697 >> minTrackShift); | |
698 } | |
699 } else | |
700 { | |
701 // Reset "too high" counter | |
702 aecm->noiseEstTooHighCtr[i] = 0; | |
703 // Ramp slowly upwards until we hit the minimum again. | |
704 if ((aecm->noiseEst[i] >> 19) > 0) | |
705 { | |
706 // Avoid overflow. | |
707 // Multiplication with 2049 will cause wrap around. Scale | |
708 // down first and then multiply | |
709 aecm->noiseEst[i] >>= 11; | |
710 aecm->noiseEst[i] *= 2049; | |
711 } | |
712 else if ((aecm->noiseEst[i] >> 11) > 0) | |
713 { | |
714 // Large enough for relative increase | |
715 aecm->noiseEst[i] *= 2049; | |
716 aecm->noiseEst[i] >>= 11; | |
717 } | |
718 else | |
719 { | |
720 // Make incremental increases based on size every | |
721 // |kNoiseEstIncCount| block | |
722 aecm->noiseEstTooLowCtr[i]++; | |
723 if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) | |
724 { | |
725 aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1; | |
726 aecm->noiseEstTooLowCtr[i] = 0; // Reset counter | |
727 } | |
728 } | |
729 } | |
730 } | |
731 | |
732 for (i = 0; i < PART_LEN1; i++) | |
733 { | |
734 tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise; | |
735 if (tmp32 > 32767) | |
736 { | |
737 tmp32 = 32767; | |
738 aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise; | |
739 } | |
740 noiseRShift16[i] = (int16_t)tmp32; | |
741 | |
742 tmp16 = ONE_Q14 - lambda[i]; | |
743 noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14); | |
744 } | |
745 | |
746 // Generate a uniform random array on [0 2^15-1]. | |
747 WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed); | |
748 | |
749 // Generate noise according to estimated energy. | |
750 uReal[0] = 0; // Reject LF noise. | |
751 uImag[0] = 0; | |
752 for (i = 1; i < PART_LEN1; i++) | |
753 { | |
754 // Get a random index for the cos and sin tables over [0 359]. | |
755 tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15); | |
756 | |
757 // Tables are in Q13. | |
758 uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >> | |
759 13); | |
760 uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >> | |
761 13); | |
762 } | |
763 uImag[PART_LEN] = 0; | |
764 | |
765 for (i = 0; i < PART_LEN1; i++) | |
766 { | |
767 out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]); | |
768 out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]); | |
769 } | |
770 } | |
771 | |
OLD | NEW |