| Index: webrtc/modules/audio_processing/aecm/aecm_core_c.c
|
| diff --git a/webrtc/modules/audio_processing/aecm/aecm_core_c.c b/webrtc/modules/audio_processing/aecm/aecm_core_c.c
|
| deleted file mode 100644
|
| index 3a8fafa4ece495710b713cb5215fd59a92bc5279..0000000000000000000000000000000000000000
|
| --- a/webrtc/modules/audio_processing/aecm/aecm_core_c.c
|
| +++ /dev/null
|
| @@ -1,771 +0,0 @@
|
| -/*
|
| - * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
|
| -
|
| -#include <assert.h>
|
| -#include <stddef.h>
|
| -#include <stdlib.h>
|
| -
|
| -#include "webrtc/common_audio/ring_buffer.h"
|
| -#include "webrtc/common_audio/signal_processing/include/real_fft.h"
|
| -#include "webrtc/modules/audio_processing/aecm/echo_control_mobile.h"
|
| -#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
|
| -#include "webrtc/system_wrappers/include/compile_assert_c.h"
|
| -#include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
|
| -#include "webrtc/typedefs.h"
|
| -
|
| -// Square root of Hanning window in Q14.
|
| -#if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON)
|
| -// Table is defined in an ARM assembly file.
|
| -extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END;
|
| -#else
|
| -static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
|
| - 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
|
| - 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
|
| - 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
|
| - 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
|
| - 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
|
| - 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
|
| - 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
|
| - 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
|
| -};
|
| -#endif
|
| -
|
| -#ifdef AECM_WITH_ABS_APPROX
|
| -//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
|
| -static const uint16_t kAlpha1 = 32584;
|
| -//Q15 beta = 0.12967166976970 const Factor for magnitude approximation
|
| -static const uint16_t kBeta1 = 4249;
|
| -//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
|
| -static const uint16_t kAlpha2 = 30879;
|
| -//Q15 beta = 0.33787806009150 const Factor for magnitude approximation
|
| -static const uint16_t kBeta2 = 11072;
|
| -//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
|
| -static const uint16_t kAlpha3 = 26951;
|
| -//Q15 beta = 0.57762063060713 const Factor for magnitude approximation
|
| -static const uint16_t kBeta3 = 18927;
|
| -#endif
|
| -
|
| -static const int16_t kNoiseEstQDomain = 15;
|
| -static const int16_t kNoiseEstIncCount = 5;
|
| -
|
| -static void ComfortNoise(AecmCore* aecm,
|
| - const uint16_t* dfa,
|
| - ComplexInt16* out,
|
| - const int16_t* lambda);
|
| -
|
| -static void WindowAndFFT(AecmCore* aecm,
|
| - int16_t* fft,
|
| - const int16_t* time_signal,
|
| - ComplexInt16* freq_signal,
|
| - int time_signal_scaling) {
|
| - int i = 0;
|
| -
|
| - // FFT of signal
|
| - for (i = 0; i < PART_LEN; i++) {
|
| - // Window time domain signal and insert into real part of
|
| - // transformation array |fft|
|
| - int16_t scaled_time_signal = time_signal[i] << time_signal_scaling;
|
| - fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14);
|
| - scaled_time_signal = time_signal[i + PART_LEN] << time_signal_scaling;
|
| - fft[PART_LEN + i] = (int16_t)((
|
| - scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
|
| - }
|
| -
|
| - // Do forward FFT, then take only the first PART_LEN complex samples,
|
| - // and change signs of the imaginary parts.
|
| - WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
|
| - for (i = 0; i < PART_LEN; i++) {
|
| - freq_signal[i].imag = -freq_signal[i].imag;
|
| - }
|
| -}
|
| -
|
| -static void InverseFFTAndWindow(AecmCore* aecm,
|
| - int16_t* fft,
|
| - ComplexInt16* efw,
|
| - int16_t* output,
|
| - const int16_t* nearendClean) {
|
| - int i, j, outCFFT;
|
| - int32_t tmp32no1;
|
| - // Reuse |efw| for the inverse FFT output after transferring
|
| - // the contents to |fft|.
|
| - int16_t* ifft_out = (int16_t*)efw;
|
| -
|
| - // Synthesis
|
| - for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
|
| - fft[j] = efw[i].real;
|
| - fft[j + 1] = -efw[i].imag;
|
| - }
|
| - fft[0] = efw[0].real;
|
| - fft[1] = -efw[0].imag;
|
| -
|
| - fft[PART_LEN2] = efw[PART_LEN].real;
|
| - fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
|
| -
|
| - // Inverse FFT. Keep outCFFT to scale the samples in the next block.
|
| - outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
|
| - for (i = 0; i < PART_LEN; i++) {
|
| - ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
|
| - ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
|
| - tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
|
| - outCFFT - aecm->dfaCleanQDomain);
|
| - output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
|
| - tmp32no1 + aecm->outBuf[i],
|
| - WEBRTC_SPL_WORD16_MIN);
|
| -
|
| - tmp32no1 = (ifft_out[PART_LEN + i] *
|
| - WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
|
| - tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
|
| - outCFFT - aecm->dfaCleanQDomain);
|
| - aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
|
| - tmp32no1,
|
| - WEBRTC_SPL_WORD16_MIN);
|
| - }
|
| -
|
| - // Copy the current block to the old position
|
| - // (aecm->outBuf is shifted elsewhere)
|
| - memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
|
| - memcpy(aecm->dBufNoisy,
|
| - aecm->dBufNoisy + PART_LEN,
|
| - sizeof(int16_t) * PART_LEN);
|
| - if (nearendClean != NULL)
|
| - {
|
| - memcpy(aecm->dBufClean,
|
| - aecm->dBufClean + PART_LEN,
|
| - sizeof(int16_t) * PART_LEN);
|
| - }
|
| -}
|
| -
|
| -// Transforms a time domain signal into the frequency domain, outputting the
|
| -// complex valued signal, absolute value and sum of absolute values.
|
| -//
|
| -// time_signal [in] Pointer to time domain signal
|
| -// freq_signal_real [out] Pointer to real part of frequency domain array
|
| -// freq_signal_imag [out] Pointer to imaginary part of frequency domain
|
| -// array
|
| -// freq_signal_abs [out] Pointer to absolute value of frequency domain
|
| -// array
|
| -// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
|
| -// the frequency domain array
|
| -// return value The Q-domain of current frequency values
|
| -//
|
| -static int TimeToFrequencyDomain(AecmCore* aecm,
|
| - const int16_t* time_signal,
|
| - ComplexInt16* freq_signal,
|
| - uint16_t* freq_signal_abs,
|
| - uint32_t* freq_signal_sum_abs) {
|
| - int i = 0;
|
| - int time_signal_scaling = 0;
|
| -
|
| - int32_t tmp32no1 = 0;
|
| - int32_t tmp32no2 = 0;
|
| -
|
| - // In fft_buf, +16 for 32-byte alignment.
|
| - int16_t fft_buf[PART_LEN4 + 16];
|
| - int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
|
| -
|
| - int16_t tmp16no1;
|
| -#ifndef WEBRTC_ARCH_ARM_V7
|
| - int16_t tmp16no2;
|
| -#endif
|
| -#ifdef AECM_WITH_ABS_APPROX
|
| - int16_t max_value = 0;
|
| - int16_t min_value = 0;
|
| - uint16_t alpha = 0;
|
| - uint16_t beta = 0;
|
| -#endif
|
| -
|
| -#ifdef AECM_DYNAMIC_Q
|
| - tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
|
| - time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
|
| -#endif
|
| -
|
| - WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
|
| -
|
| - // Extract imaginary and real part, calculate the magnitude for
|
| - // all frequency bins
|
| - freq_signal[0].imag = 0;
|
| - freq_signal[PART_LEN].imag = 0;
|
| - freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
|
| - freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
|
| - freq_signal[PART_LEN].real);
|
| - (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
|
| - (uint32_t)(freq_signal_abs[PART_LEN]);
|
| -
|
| - for (i = 1; i < PART_LEN; i++)
|
| - {
|
| - if (freq_signal[i].real == 0)
|
| - {
|
| - freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
|
| - }
|
| - else if (freq_signal[i].imag == 0)
|
| - {
|
| - freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
|
| - }
|
| - else
|
| - {
|
| - // Approximation for magnitude of complex fft output
|
| - // magn = sqrt(real^2 + imag^2)
|
| - // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
|
| - //
|
| - // The parameters alpha and beta are stored in Q15
|
| -
|
| -#ifdef AECM_WITH_ABS_APPROX
|
| - tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
|
| - tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
|
| -
|
| - if(tmp16no1 > tmp16no2)
|
| - {
|
| - max_value = tmp16no1;
|
| - min_value = tmp16no2;
|
| - } else
|
| - {
|
| - max_value = tmp16no2;
|
| - min_value = tmp16no1;
|
| - }
|
| -
|
| - // Magnitude in Q(-6)
|
| - if ((max_value >> 2) > min_value)
|
| - {
|
| - alpha = kAlpha1;
|
| - beta = kBeta1;
|
| - } else if ((max_value >> 1) > min_value)
|
| - {
|
| - alpha = kAlpha2;
|
| - beta = kBeta2;
|
| - } else
|
| - {
|
| - alpha = kAlpha3;
|
| - beta = kBeta3;
|
| - }
|
| - tmp16no1 = (int16_t)((max_value * alpha) >> 15);
|
| - tmp16no2 = (int16_t)((min_value * beta) >> 15);
|
| - freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2;
|
| -#else
|
| -#ifdef WEBRTC_ARCH_ARM_V7
|
| - __asm __volatile(
|
| - "smulbb %[tmp32no1], %[real], %[real]\n\t"
|
| - "smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
|
| - :[tmp32no1]"+&r"(tmp32no1),
|
| - [tmp32no2]"=r"(tmp32no2)
|
| - :[real]"r"(freq_signal[i].real),
|
| - [imag]"r"(freq_signal[i].imag)
|
| - );
|
| -#else
|
| - tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
|
| - tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
|
| - tmp32no1 = tmp16no1 * tmp16no1;
|
| - tmp32no2 = tmp16no2 * tmp16no2;
|
| - tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
|
| -#endif // WEBRTC_ARCH_ARM_V7
|
| - tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
|
| -
|
| - freq_signal_abs[i] = (uint16_t)tmp32no1;
|
| -#endif // AECM_WITH_ABS_APPROX
|
| - }
|
| - (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
|
| - }
|
| -
|
| - return time_signal_scaling;
|
| -}
|
| -
|
| -int WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
| - const int16_t* farend,
|
| - const int16_t* nearendNoisy,
|
| - const int16_t* nearendClean,
|
| - int16_t* output) {
|
| - int i;
|
| -
|
| - uint32_t xfaSum;
|
| - uint32_t dfaNoisySum;
|
| - uint32_t dfaCleanSum;
|
| - uint32_t echoEst32Gained;
|
| - uint32_t tmpU32;
|
| -
|
| - int32_t tmp32no1;
|
| -
|
| - uint16_t xfa[PART_LEN1];
|
| - uint16_t dfaNoisy[PART_LEN1];
|
| - uint16_t dfaClean[PART_LEN1];
|
| - uint16_t* ptrDfaClean = dfaClean;
|
| - const uint16_t* far_spectrum_ptr = NULL;
|
| -
|
| - // 32 byte aligned buffers (with +8 or +16).
|
| - // TODO(kma): define fft with ComplexInt16.
|
| - int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
|
| - int32_t echoEst32_buf[PART_LEN1 + 8];
|
| - int32_t dfw_buf[PART_LEN2 + 8];
|
| - int32_t efw_buf[PART_LEN2 + 8];
|
| -
|
| - int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31);
|
| - int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
|
| - ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31);
|
| - ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31);
|
| -
|
| - int16_t hnl[PART_LEN1];
|
| - int16_t numPosCoef = 0;
|
| - int16_t nlpGain = ONE_Q14;
|
| - int delay;
|
| - int16_t tmp16no1;
|
| - int16_t tmp16no2;
|
| - int16_t mu;
|
| - int16_t supGain;
|
| - int16_t zeros32, zeros16;
|
| - int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
|
| - int far_q;
|
| - int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff;
|
| -
|
| - const int kMinPrefBand = 4;
|
| - const int kMaxPrefBand = 24;
|
| - int32_t avgHnl32 = 0;
|
| -
|
| - // Determine startup state. There are three states:
|
| - // (0) the first CONV_LEN blocks
|
| - // (1) another CONV_LEN blocks
|
| - // (2) the rest
|
| -
|
| - if (aecm->startupState < 2)
|
| - {
|
| - aecm->startupState = (aecm->totCount >= CONV_LEN) +
|
| - (aecm->totCount >= CONV_LEN2);
|
| - }
|
| - // END: Determine startup state
|
| -
|
| - // Buffer near and far end signals
|
| - memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
|
| - memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
|
| - if (nearendClean != NULL)
|
| - {
|
| - memcpy(aecm->dBufClean + PART_LEN,
|
| - nearendClean,
|
| - sizeof(int16_t) * PART_LEN);
|
| - }
|
| -
|
| - // Transform far end signal from time domain to frequency domain.
|
| - far_q = TimeToFrequencyDomain(aecm,
|
| - aecm->xBuf,
|
| - dfw,
|
| - xfa,
|
| - &xfaSum);
|
| -
|
| - // Transform noisy near end signal from time domain to frequency domain.
|
| - zerosDBufNoisy = TimeToFrequencyDomain(aecm,
|
| - aecm->dBufNoisy,
|
| - dfw,
|
| - dfaNoisy,
|
| - &dfaNoisySum);
|
| - aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
|
| - aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
|
| -
|
| -
|
| - if (nearendClean == NULL)
|
| - {
|
| - ptrDfaClean = dfaNoisy;
|
| - aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
|
| - aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
|
| - dfaCleanSum = dfaNoisySum;
|
| - } else
|
| - {
|
| - // Transform clean near end signal from time domain to frequency domain.
|
| - zerosDBufClean = TimeToFrequencyDomain(aecm,
|
| - aecm->dBufClean,
|
| - dfw,
|
| - dfaClean,
|
| - &dfaCleanSum);
|
| - aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
|
| - aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
|
| - }
|
| -
|
| - // Get the delay
|
| - // Save far-end history and estimate delay
|
| - WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
|
| - if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend,
|
| - xfa,
|
| - PART_LEN1,
|
| - far_q) == -1) {
|
| - return -1;
|
| - }
|
| - delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
|
| - dfaNoisy,
|
| - PART_LEN1,
|
| - zerosDBufNoisy);
|
| - if (delay == -1)
|
| - {
|
| - return -1;
|
| - }
|
| - else if (delay == -2)
|
| - {
|
| - // If the delay is unknown, we assume zero.
|
| - // NOTE: this will have to be adjusted if we ever add lookahead.
|
| - delay = 0;
|
| - }
|
| -
|
| - if (aecm->fixedDelay >= 0)
|
| - {
|
| - // Use fixed delay
|
| - delay = aecm->fixedDelay;
|
| - }
|
| -
|
| - // Get aligned far end spectrum
|
| - far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
|
| - zerosXBuf = (int16_t) far_q;
|
| - if (far_spectrum_ptr == NULL)
|
| - {
|
| - return -1;
|
| - }
|
| -
|
| - // Calculate log(energy) and update energy threshold levels
|
| - WebRtcAecm_CalcEnergies(aecm,
|
| - far_spectrum_ptr,
|
| - zerosXBuf,
|
| - dfaNoisySum,
|
| - echoEst32);
|
| -
|
| - // Calculate stepsize
|
| - mu = WebRtcAecm_CalcStepSize(aecm);
|
| -
|
| - // Update counters
|
| - aecm->totCount++;
|
| -
|
| - // This is the channel estimation algorithm.
|
| - // It is base on NLMS but has a variable step length,
|
| - // which was calculated above.
|
| - WebRtcAecm_UpdateChannel(aecm,
|
| - far_spectrum_ptr,
|
| - zerosXBuf,
|
| - dfaNoisy,
|
| - mu,
|
| - echoEst32);
|
| - supGain = WebRtcAecm_CalcSuppressionGain(aecm);
|
| -
|
| -
|
| - // Calculate Wiener filter hnl[]
|
| - for (i = 0; i < PART_LEN1; i++)
|
| - {
|
| - // Far end signal through channel estimate in Q8
|
| - // How much can we shift right to preserve resolution
|
| - tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
|
| - aecm->echoFilt[i] += (tmp32no1 * 50) >> 8;
|
| -
|
| - zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
|
| - zeros16 = WebRtcSpl_NormW16(supGain) + 1;
|
| - if (zeros32 + zeros16 > 16)
|
| - {
|
| - // Multiplication is safe
|
| - // Result in
|
| - // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
|
| - // aecm->xfaQDomainBuf[diff])
|
| - echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
|
| - (uint16_t)supGain);
|
| - resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
|
| - resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
|
| - } else
|
| - {
|
| - tmp16no1 = 17 - zeros32 - zeros16;
|
| - resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
|
| - RESOLUTION_SUPGAIN;
|
| - resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
|
| - if (zeros32 > tmp16no1)
|
| - {
|
| - echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
|
| - supGain >> tmp16no1);
|
| - } else
|
| - {
|
| - // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
|
| - echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
|
| - }
|
| - }
|
| -
|
| - zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
|
| - assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative.
|
| - dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
|
| - if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
|
| - tmp16no1 = aecm->nearFilt[i] << zeros16;
|
| - qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
|
| - tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
|
| - } else {
|
| - tmp16no1 = dfa_clean_q_domain_diff < 0
|
| - ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
|
| - : aecm->nearFilt[i] << dfa_clean_q_domain_diff;
|
| - qDomainDiff = 0;
|
| - tmp16no2 = ptrDfaClean[i];
|
| - }
|
| - tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
|
| - tmp16no2 = (int16_t)(tmp32no1 >> 4);
|
| - tmp16no2 += tmp16no1;
|
| - zeros16 = WebRtcSpl_NormW16(tmp16no2);
|
| - if ((tmp16no2) & (-qDomainDiff > zeros16)) {
|
| - aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
|
| - } else {
|
| - aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff
|
| - : tmp16no2 >> qDomainDiff;
|
| - }
|
| -
|
| - // Wiener filter coefficients, resulting hnl in Q14
|
| - if (echoEst32Gained == 0)
|
| - {
|
| - hnl[i] = ONE_Q14;
|
| - } else if (aecm->nearFilt[i] == 0)
|
| - {
|
| - hnl[i] = 0;
|
| - } else
|
| - {
|
| - // Multiply the suppression gain
|
| - // Rounding
|
| - echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
|
| - tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
|
| - (uint16_t)aecm->nearFilt[i]);
|
| -
|
| - // Current resolution is
|
| - // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
|
| - // Make sure we are in Q14
|
| - tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
|
| - if (tmp32no1 > ONE_Q14)
|
| - {
|
| - hnl[i] = 0;
|
| - } else if (tmp32no1 < 0)
|
| - {
|
| - hnl[i] = ONE_Q14;
|
| - } else
|
| - {
|
| - // 1-echoEst/dfa
|
| - hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
|
| - if (hnl[i] < 0)
|
| - {
|
| - hnl[i] = 0;
|
| - }
|
| - }
|
| - }
|
| - if (hnl[i])
|
| - {
|
| - numPosCoef++;
|
| - }
|
| - }
|
| - // Only in wideband. Prevent the gain in upper band from being larger than
|
| - // in lower band.
|
| - if (aecm->mult == 2)
|
| - {
|
| - // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
|
| - // speech distortion in double-talk.
|
| - for (i = 0; i < PART_LEN1; i++)
|
| - {
|
| - hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14);
|
| - }
|
| -
|
| - for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
|
| - {
|
| - avgHnl32 += (int32_t)hnl[i];
|
| - }
|
| - assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
|
| - avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
|
| -
|
| - for (i = kMaxPrefBand; i < PART_LEN1; i++)
|
| - {
|
| - if (hnl[i] > (int16_t)avgHnl32)
|
| - {
|
| - hnl[i] = (int16_t)avgHnl32;
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Calculate NLP gain, result is in Q14
|
| - if (aecm->nlpFlag)
|
| - {
|
| - for (i = 0; i < PART_LEN1; i++)
|
| - {
|
| - // Truncate values close to zero and one.
|
| - if (hnl[i] > NLP_COMP_HIGH)
|
| - {
|
| - hnl[i] = ONE_Q14;
|
| - } else if (hnl[i] < NLP_COMP_LOW)
|
| - {
|
| - hnl[i] = 0;
|
| - }
|
| -
|
| - // Remove outliers
|
| - if (numPosCoef < 3)
|
| - {
|
| - nlpGain = 0;
|
| - } else
|
| - {
|
| - nlpGain = ONE_Q14;
|
| - }
|
| -
|
| - // NLP
|
| - if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
|
| - {
|
| - hnl[i] = ONE_Q14;
|
| - } else
|
| - {
|
| - hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14);
|
| - }
|
| -
|
| - // multiply with Wiener coefficients
|
| - efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
|
| - hnl[i], 14));
|
| - efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
|
| - hnl[i], 14));
|
| - }
|
| - }
|
| - else
|
| - {
|
| - // multiply with Wiener coefficients
|
| - for (i = 0; i < PART_LEN1; i++)
|
| - {
|
| - efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
|
| - hnl[i], 14));
|
| - efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
|
| - hnl[i], 14));
|
| - }
|
| - }
|
| -
|
| - if (aecm->cngMode == AecmTrue)
|
| - {
|
| - ComfortNoise(aecm, ptrDfaClean, efw, hnl);
|
| - }
|
| -
|
| - InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
|
| -
|
| - return 0;
|
| -}
|
| -
|
| -static void ComfortNoise(AecmCore* aecm,
|
| - const uint16_t* dfa,
|
| - ComplexInt16* out,
|
| - const int16_t* lambda) {
|
| - int16_t i;
|
| - int16_t tmp16;
|
| - int32_t tmp32;
|
| -
|
| - int16_t randW16[PART_LEN];
|
| - int16_t uReal[PART_LEN1];
|
| - int16_t uImag[PART_LEN1];
|
| - int32_t outLShift32;
|
| - int16_t noiseRShift16[PART_LEN1];
|
| -
|
| - int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
|
| - int16_t minTrackShift;
|
| -
|
| - assert(shiftFromNearToNoise >= 0);
|
| - assert(shiftFromNearToNoise < 16);
|
| -
|
| - if (aecm->noiseEstCtr < 100)
|
| - {
|
| - // Track the minimum more quickly initially.
|
| - aecm->noiseEstCtr++;
|
| - minTrackShift = 6;
|
| - } else
|
| - {
|
| - minTrackShift = 9;
|
| - }
|
| -
|
| - // Estimate noise power.
|
| - for (i = 0; i < PART_LEN1; i++)
|
| - {
|
| - // Shift to the noise domain.
|
| - tmp32 = (int32_t)dfa[i];
|
| - outLShift32 = tmp32 << shiftFromNearToNoise;
|
| -
|
| - if (outLShift32 < aecm->noiseEst[i])
|
| - {
|
| - // Reset "too low" counter
|
| - aecm->noiseEstTooLowCtr[i] = 0;
|
| - // Track the minimum.
|
| - if (aecm->noiseEst[i] < (1 << minTrackShift))
|
| - {
|
| - // For small values, decrease noiseEst[i] every
|
| - // |kNoiseEstIncCount| block. The regular approach below can not
|
| - // go further down due to truncation.
|
| - aecm->noiseEstTooHighCtr[i]++;
|
| - if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
|
| - {
|
| - aecm->noiseEst[i]--;
|
| - aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
|
| - }
|
| - }
|
| - else
|
| - {
|
| - aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32)
|
| - >> minTrackShift);
|
| - }
|
| - } else
|
| - {
|
| - // Reset "too high" counter
|
| - aecm->noiseEstTooHighCtr[i] = 0;
|
| - // Ramp slowly upwards until we hit the minimum again.
|
| - if ((aecm->noiseEst[i] >> 19) > 0)
|
| - {
|
| - // Avoid overflow.
|
| - // Multiplication with 2049 will cause wrap around. Scale
|
| - // down first and then multiply
|
| - aecm->noiseEst[i] >>= 11;
|
| - aecm->noiseEst[i] *= 2049;
|
| - }
|
| - else if ((aecm->noiseEst[i] >> 11) > 0)
|
| - {
|
| - // Large enough for relative increase
|
| - aecm->noiseEst[i] *= 2049;
|
| - aecm->noiseEst[i] >>= 11;
|
| - }
|
| - else
|
| - {
|
| - // Make incremental increases based on size every
|
| - // |kNoiseEstIncCount| block
|
| - aecm->noiseEstTooLowCtr[i]++;
|
| - if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
|
| - {
|
| - aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
|
| - aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - for (i = 0; i < PART_LEN1; i++)
|
| - {
|
| - tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
|
| - if (tmp32 > 32767)
|
| - {
|
| - tmp32 = 32767;
|
| - aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
|
| - }
|
| - noiseRShift16[i] = (int16_t)tmp32;
|
| -
|
| - tmp16 = ONE_Q14 - lambda[i];
|
| - noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14);
|
| - }
|
| -
|
| - // Generate a uniform random array on [0 2^15-1].
|
| - WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
|
| -
|
| - // Generate noise according to estimated energy.
|
| - uReal[0] = 0; // Reject LF noise.
|
| - uImag[0] = 0;
|
| - for (i = 1; i < PART_LEN1; i++)
|
| - {
|
| - // Get a random index for the cos and sin tables over [0 359].
|
| - tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15);
|
| -
|
| - // Tables are in Q13.
|
| - uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >>
|
| - 13);
|
| - uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >>
|
| - 13);
|
| - }
|
| - uImag[PART_LEN] = 0;
|
| -
|
| - for (i = 0; i < PART_LEN1; i++)
|
| - {
|
| - out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
|
| - out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
|
| - }
|
| -}
|
| -
|
|
|