Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
index f0050a2ae12f155d41642116d2b6e0e64e18c058..8f0e7bf6b931a384811cb6599b7782e1da0793c1 100644 |
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
@@ -27,11 +27,16 @@ namespace { |
const size_t kErbResolution = 2; |
const int kWindowSizeMs = 16; |
const int kChunkSizeMs = 10; // Size provided by APM. |
-const float kClipFreq = 200.0f; |
-const float kConfigRho = 0.02f; // Default production and interpretation SNR. |
+const float kClipFreqKhz = 0.2f; |
const float kKbdAlpha = 1.5f; |
const float kLambdaBot = -1.0f; // Extreme values in bisection |
const float kLambdaTop = -10e-18f; // search for lamda. |
+const float kVoiceProbabilityThreshold = 0.02f; |
+// Number of chunks after voice activity which is still considered speech. |
+const size_t kSpeechOffsetDelay = 80; |
+const float kDecayRate = 0.98f; // Power estimation decay rate. |
+const float kMaxRelativeGainChange = 0.04f; // Maximum relative change in gain. |
+const float kRho = 0.0004f; // Default production and interpretation SNR. |
// Returns dot product of vectors |a| and |b| with size |length|. |
float DotProduct(const float* a, const float* b, size_t length) { |
@@ -72,61 +77,46 @@ void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( |
} |
} |
-IntelligibilityEnhancer::IntelligibilityEnhancer() |
- : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) { |
-} |
- |
-IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config) |
+IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz, |
+ size_t num_render_channels) |
: freqs_(RealFourier::ComplexLength( |
- RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))), |
- window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))), |
- chunk_length_( |
- static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)), |
- bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)), |
- sample_rate_hz_(config.sample_rate_hz), |
- erb_resolution_(kErbResolution), |
- num_capture_channels_(config.num_capture_channels), |
- num_render_channels_(config.num_render_channels), |
- analysis_rate_(config.analysis_rate), |
- active_(true), |
- clear_power_(freqs_, config.decay_rate), |
- noise_power_(freqs_, 0.f), |
+ RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))), |
+ chunk_length_(static_cast<size_t>(sample_rate_hz * kChunkSizeMs / 1000)), |
+ bank_size_(GetBankSize(sample_rate_hz, kErbResolution)), |
+ sample_rate_hz_(sample_rate_hz), |
+ num_render_channels_(num_render_channels), |
+ clear_power_estimator_(freqs_, kDecayRate), |
+ noise_power_estimator_( |
+ new intelligibility::PowerEstimator<float>(freqs_, kDecayRate)), |
filtered_clear_pow_(new float[bank_size_]), |
filtered_noise_pow_(new float[bank_size_]), |
center_freqs_(new float[bank_size_]), |
render_filter_bank_(CreateErbBank(freqs_)), |
- rho_(new float[bank_size_]), |
gains_eq_(new float[bank_size_]), |
- gain_applier_(freqs_, config.gain_change_limit), |
+ gain_applier_(freqs_, kMaxRelativeGainChange), |
temp_render_out_buffer_(chunk_length_, num_render_channels_), |
- kbd_window_(new float[window_size_]), |
render_callback_(this), |
- block_count_(0), |
- analysis_step_(0) { |
- RTC_DCHECK_LE(config.rho, 1.0f); |
+ audio_s16_(chunk_length_), |
+ chunks_since_voice_(kSpeechOffsetDelay), |
+ is_speech_(false) { |
+ RTC_DCHECK_LE(kRho, 1.f); |
- memset(filtered_clear_pow_.get(), |
- 0, |
+ memset(filtered_clear_pow_.get(), 0, |
bank_size_ * sizeof(filtered_clear_pow_[0])); |
- memset(filtered_noise_pow_.get(), |
- 0, |
+ memset(filtered_noise_pow_.get(), 0, |
bank_size_ * sizeof(filtered_noise_pow_[0])); |
- // Assumes all rho equal. |
- for (size_t i = 0; i < bank_size_; ++i) { |
- rho_[i] = config.rho * config.rho; |
- } |
- |
- float freqs_khz = kClipFreq / 1000.0f; |
- size_t erb_index = static_cast<size_t>(ceilf( |
- 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); |
- start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_); |
+ const size_t erb_index = static_cast<size_t>( |
+ ceilf(11.17f * logf((kClipFreqKhz + 0.312f) / (kClipFreqKhz + 14.6575f)) + |
+ 43.f)); |
+ start_freq_ = std::max(static_cast<size_t>(1), erb_index * kErbResolution); |
- WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, |
- kbd_window_.get()); |
+ size_t window_size = static_cast<size_t>(1 << RealFourier::FftOrder(freqs_)); |
+ std::vector<float> kbd_window(window_size); |
+ WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size, &kbd_window[0]); |
render_mangler_.reset(new LappedTransform( |
- num_render_channels_, num_render_channels_, chunk_length_, |
- kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_)); |
+ num_render_channels_, num_render_channels_, chunk_length_, &kbd_window[0], |
+ window_size, window_size / 2, &render_callback_)); |
} |
void IntelligibilityEnhancer::SetCaptureNoiseEstimate( |
@@ -134,13 +124,10 @@ void IntelligibilityEnhancer::SetCaptureNoiseEstimate( |
if (capture_filter_bank_.size() != bank_size_ || |
capture_filter_bank_[0].size() != noise.size()) { |
capture_filter_bank_ = CreateErbBank(noise.size()); |
+ noise_power_estimator_.reset( |
+ new intelligibility::PowerEstimator<float>(noise.size(), kDecayRate)); |
} |
- if (noise.size() != noise_power_.size()) { |
- noise_power_.resize(noise.size()); |
- } |
- for (size_t i = 0; i < noise.size(); ++i) { |
- noise_power_[i] = noise[i] * noise[i]; |
- } |
+ noise_power_estimator_->Step(&noise[0]); |
} |
void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, |
@@ -148,54 +135,29 @@ void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, |
size_t num_channels) { |
RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); |
RTC_CHECK_EQ(num_render_channels_, num_channels); |
- |
- if (active_) { |
- render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); |
- } |
- |
- if (active_) { |
- for (size_t i = 0; i < num_render_channels_; ++i) { |
- memcpy(audio[i], temp_render_out_buffer_.channels()[i], |
- chunk_length_ * sizeof(**audio)); |
- } |
+ is_speech_ = IsSpeech(audio[0]); |
+ render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); |
+ for (size_t i = 0; i < num_render_channels_; ++i) { |
+ memcpy(audio[i], temp_render_out_buffer_.channels()[i], |
+ chunk_length_ * sizeof(**audio)); |
} |
} |
void IntelligibilityEnhancer::ProcessClearBlock( |
const std::complex<float>* in_block, |
std::complex<float>* out_block) { |
- if (block_count_ < 2) { |
- memset(out_block, 0, freqs_ * sizeof(*out_block)); |
- ++block_count_; |
- return; |
- } |
- |
- // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary. |
- if (true) { |
- clear_power_.Step(in_block); |
- if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { |
- AnalyzeClearBlock(); |
- ++analysis_step_; |
- } |
- ++block_count_; |
- } |
- |
- if (active_) { |
- gain_applier_.Apply(in_block, out_block); |
+ if (is_speech_) { |
+ clear_power_estimator_.Step(in_block); |
} |
-} |
- |
-void IntelligibilityEnhancer::AnalyzeClearBlock() { |
- const float* clear_power = clear_power_.Power(); |
- MapToErbBands(clear_power, |
- render_filter_bank_, |
+ const std::vector<float>& clear_power = clear_power_estimator_.power(); |
+ const std::vector<float>& noise_power = noise_power_estimator_->power(); |
+ MapToErbBands(&clear_power[0], render_filter_bank_, |
filtered_clear_pow_.get()); |
- MapToErbBands(&noise_power_[0], |
- capture_filter_bank_, |
+ MapToErbBands(&noise_power[0], capture_filter_bank_, |
filtered_noise_pow_.get()); |
SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); |
- const float power_target = std::accumulate( |
- clear_power, clear_power + freqs_, 0.f); |
+ const float power_target = |
+ std::accumulate(&clear_power[0], &clear_power[0] + freqs_, 0.f); |
const float power_top = |
DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); |
@@ -205,6 +167,7 @@ void IntelligibilityEnhancer::AnalyzeClearBlock() { |
SolveForLambda(power_target, power_bot, power_top); |
UpdateErbGains(); |
} // Else experiencing power underflow, so do nothing. |
+ gain_applier_.Apply(in_block, out_block); |
} |
void IntelligibilityEnhancer::SolveForLambda(float power_target, |
@@ -217,11 +180,10 @@ void IntelligibilityEnhancer::SolveForLambda(float power_target, |
1.f / (power_target + std::numeric_limits<float>::epsilon()); |
float lambda_bot = kLambdaBot; |
float lambda_top = kLambdaTop; |
- float power_ratio = 2.0f; // Ratio of achieved power to target power. |
+ float power_ratio = 2.f; // Ratio of achieved power to target power. |
int iters = 0; |
- while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && |
- iters <= kMaxIters) { |
- const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
+ while (std::fabs(power_ratio - 1.f) > kConvergeThresh && iters <= kMaxIters) { |
+ const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.f; |
SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); |
const float power = |
DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
@@ -239,7 +201,7 @@ void IntelligibilityEnhancer::UpdateErbGains() { |
// (ERB gain) = filterbank' * (freq gain) |
float* gains = gain_applier_.target(); |
for (size_t i = 0; i < freqs_; ++i) { |
- gains[i] = 0.0f; |
+ gains[i] = 0.f; |
for (size_t j = 0; j < bank_size_; ++j) { |
gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]); |
} |
@@ -248,9 +210,9 @@ void IntelligibilityEnhancer::UpdateErbGains() { |
size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, |
size_t erb_resolution) { |
- float freq_limit = sample_rate / 2000.0f; |
+ float freq_limit = sample_rate / 2000.f; |
size_t erb_scale = static_cast<size_t>(ceilf( |
- 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f)); |
+ 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f)); |
return erb_scale * erb_resolution; |
} |
@@ -260,7 +222,7 @@ std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank( |
size_t lf = 1, rf = 4; |
for (size_t i = 0; i < bank_size_; ++i) { |
- float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); |
+ float abs_temp = fabsf((i + 1.f) / static_cast<float>(kErbResolution)); |
center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); |
center_freqs_[i] -= 14678.49f; |
} |
@@ -274,48 +236,43 @@ std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank( |
} |
for (size_t i = 1; i <= bank_size_; ++i) { |
- size_t lll, ll, rr, rrr; |
static const size_t kOne = 1; // Avoids repeated static_cast<>s below. |
- lll = static_cast<size_t>(round( |
- center_freqs_[std::max(kOne, i - lf) - 1] * num_freqs / |
- (0.5f * sample_rate_hz_))); |
- ll = static_cast<size_t>(round( |
- center_freqs_[std::max(kOne, i) - 1] * num_freqs / |
- (0.5f * sample_rate_hz_))); |
+ size_t lll = |
+ static_cast<size_t>(round(center_freqs_[std::max(kOne, i - lf) - 1] * |
+ num_freqs / (0.5f * sample_rate_hz_))); |
+ size_t ll = static_cast<size_t>(round(center_freqs_[std::max(kOne, i) - 1] * |
+ num_freqs / (0.5f * sample_rate_hz_))); |
lll = std::min(num_freqs, std::max(lll, kOne)) - 1; |
ll = std::min(num_freqs, std::max(ll, kOne)) - 1; |
- rrr = static_cast<size_t>(round( |
- center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / |
- (0.5f * sample_rate_hz_))); |
- rr = static_cast<size_t>(round( |
- center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / |
- (0.5f * sample_rate_hz_))); |
+ size_t rrr = static_cast<size_t>( |
+ round(center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / |
+ (0.5f * sample_rate_hz_))); |
+ size_t rr = static_cast<size_t>( |
+ round(center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / |
+ (0.5f * sample_rate_hz_))); |
rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1; |
rr = std::min(num_freqs, std::max(rr, kOne)) - 1; |
- float step, element; |
- |
- step = ll == lll ? 0.f : 1.f / (ll - lll); |
- element = 0.0f; |
+ float step = ll == lll ? 0.f : 1.f / (ll - lll); |
+ float element = 0.f; |
for (size_t j = lll; j <= ll; ++j) { |
filter_bank[i - 1][j] = element; |
element += step; |
} |
step = rr == rrr ? 0.f : 1.f / (rrr - rr); |
- element = 1.0f; |
+ element = 1.f; |
for (size_t j = rr; j <= rrr; ++j) { |
filter_bank[i - 1][j] = element; |
element -= step; |
} |
for (size_t j = ll; j <= rr; ++j) { |
- filter_bank[i - 1][j] = 1.0f; |
+ filter_bank[i - 1][j] = 1.f; |
} |
} |
- float sum; |
for (size_t i = 0; i < num_freqs; ++i) { |
- sum = 0.0f; |
+ float sum = 0.f; |
for (size_t j = 0; j < bank_size_; ++j) { |
sum += filter_bank[j][i]; |
} |
@@ -329,22 +286,22 @@ std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank( |
void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, |
size_t start_freq, |
float* sols) { |
- bool quadratic = (kConfigRho < 1.0f); |
+ bool quadratic = (kRho < 1.f); |
const float* pow_x0 = filtered_clear_pow_.get(); |
const float* pow_n0 = filtered_noise_pow_.get(); |
for (size_t n = 0; n < start_freq; ++n) { |
- sols[n] = 1.0f; |
+ sols[n] = 1.f; |
} |
// Analytic solution for optimal gains. See paper for derivation. |
for (size_t n = start_freq - 1; n < bank_size_; ++n) { |
float alpha0, beta0, gamma0; |
- gamma0 = 0.5f * rho_[n] * pow_x0[n] * pow_n0[n] + |
+ gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] + |
lambda * pow_x0[n] * pow_n0[n] * pow_n0[n]; |
- beta0 = lambda * pow_x0[n] * (2 - rho_[n]) * pow_x0[n] * pow_n0[n]; |
+ beta0 = lambda * pow_x0[n] * (2 - kRho) * pow_x0[n] * pow_n0[n]; |
if (quadratic) { |
- alpha0 = lambda * pow_x0[n] * (1 - rho_[n]) * pow_x0[n] * pow_x0[n]; |
+ alpha0 = lambda * pow_x0[n] * (1 - kRho) * pow_x0[n] * pow_x0[n]; |
sols[n] = |
(-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / |
(2 * alpha0 + std::numeric_limits<float>::epsilon()); |
@@ -355,8 +312,15 @@ void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, |
} |
} |
-bool IntelligibilityEnhancer::active() const { |
- return active_; |
+bool IntelligibilityEnhancer::IsSpeech(const float* audio) { |
+ FloatToS16(audio, chunk_length_, &audio_s16_[0]); |
+ vad_.ProcessChunk(&audio_s16_[0], chunk_length_, sample_rate_hz_); |
+ if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) { |
+ chunks_since_voice_ = 0; |
+ } else if (chunks_since_voice_ < kSpeechOffsetDelay) { |
+ ++chunks_since_voice_; |
+ } |
+ return chunks_since_voice_ < kSpeechOffsetDelay; |
} |
} // namespace webrtc |