OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc
er.h" | 11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc
er.h" |
12 | 12 |
13 #include <math.h> | 13 #include <math.h> |
14 #include <stdlib.h> | 14 #include <stdlib.h> |
15 #include <algorithm> | 15 #include <algorithm> |
16 #include <limits> | 16 #include <limits> |
17 #include <numeric> | 17 #include <numeric> |
18 | 18 |
19 #include "webrtc/base/checks.h" | 19 #include "webrtc/base/checks.h" |
20 #include "webrtc/common_audio/include/audio_util.h" | 20 #include "webrtc/common_audio/include/audio_util.h" |
21 #include "webrtc/common_audio/window_generator.h" | 21 #include "webrtc/common_audio/window_generator.h" |
22 | 22 |
23 namespace webrtc { | 23 namespace webrtc { |
24 | 24 |
25 namespace { | 25 namespace { |
26 | 26 |
27 const size_t kErbResolution = 2; | 27 const size_t kErbResolution = 2; |
28 const int kWindowSizeMs = 16; | 28 const int kWindowSizeMs = 16; |
29 const int kChunkSizeMs = 10; // Size provided by APM. | 29 const int kChunkSizeMs = 10; // Size provided by APM. |
30 const float kClipFreq = 200.0f; | 30 const float kClipFreqKhz = 0.2f; |
31 const float kConfigRho = 0.02f; // Default production and interpretation SNR. | |
32 const float kKbdAlpha = 1.5f; | 31 const float kKbdAlpha = 1.5f; |
33 const float kLambdaBot = -1.0f; // Extreme values in bisection | 32 const float kLambdaBot = -1.0f; // Extreme values in bisection |
34 const float kLambdaTop = -10e-18f; // search for lamda. | 33 const float kLambdaTop = -10e-18f; // search for lamda. |
| 34 const float kVoiceProbabilityThreshold = 0.02f; |
| 35 // Number of chunks after voice activity which is still considered speech. |
| 36 const size_t kSpeechOffsetDelay = 80; |
| 37 const float kDecayRate = 0.98f; // Power estimation decay rate. |
| 38 const float kMaxRelativeGainChange = 0.04f; // Maximum relative change in gain. |
| 39 const float kRho = 0.0004f; // Default production and interpretation SNR. |
35 | 40 |
36 // Returns dot product of vectors |a| and |b| with size |length|. | 41 // Returns dot product of vectors |a| and |b| with size |length|. |
37 float DotProduct(const float* a, const float* b, size_t length) { | 42 float DotProduct(const float* a, const float* b, size_t length) { |
38 float ret = 0.f; | 43 float ret = 0.f; |
39 for (size_t i = 0; i < length; ++i) { | 44 for (size_t i = 0; i < length; ++i) { |
40 ret = fmaf(a[i], b[i], ret); | 45 ret = fmaf(a[i], b[i], ret); |
41 } | 46 } |
42 return ret; | 47 return ret; |
43 } | 48 } |
44 | 49 |
(...skipping 20 matching lines...) Expand all Loading... |
65 size_t in_channels, | 70 size_t in_channels, |
66 size_t frames, | 71 size_t frames, |
67 size_t /* out_channels */, | 72 size_t /* out_channels */, |
68 std::complex<float>* const* out_block) { | 73 std::complex<float>* const* out_block) { |
69 RTC_DCHECK_EQ(parent_->freqs_, frames); | 74 RTC_DCHECK_EQ(parent_->freqs_, frames); |
70 for (size_t i = 0; i < in_channels; ++i) { | 75 for (size_t i = 0; i < in_channels; ++i) { |
71 parent_->ProcessClearBlock(in_block[i], out_block[i]); | 76 parent_->ProcessClearBlock(in_block[i], out_block[i]); |
72 } | 77 } |
73 } | 78 } |
74 | 79 |
75 IntelligibilityEnhancer::IntelligibilityEnhancer() | 80 IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz, |
76 : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) { | 81 size_t num_render_channels) |
77 } | |
78 | |
79 IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config) | |
80 : freqs_(RealFourier::ComplexLength( | 82 : freqs_(RealFourier::ComplexLength( |
81 RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))), | 83 RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))), |
82 window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))), | 84 chunk_length_(static_cast<size_t>(sample_rate_hz * kChunkSizeMs / 1000)), |
83 chunk_length_( | 85 bank_size_(GetBankSize(sample_rate_hz, kErbResolution)), |
84 static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)), | 86 sample_rate_hz_(sample_rate_hz), |
85 bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)), | 87 num_render_channels_(num_render_channels), |
86 sample_rate_hz_(config.sample_rate_hz), | 88 clear_power_estimator_(freqs_, kDecayRate), |
87 erb_resolution_(kErbResolution), | 89 noise_power_estimator_( |
88 num_capture_channels_(config.num_capture_channels), | 90 new intelligibility::PowerEstimator<float>(freqs_, kDecayRate)), |
89 num_render_channels_(config.num_render_channels), | |
90 analysis_rate_(config.analysis_rate), | |
91 active_(true), | |
92 clear_power_(freqs_, config.decay_rate), | |
93 noise_power_(freqs_, 0.f), | |
94 filtered_clear_pow_(new float[bank_size_]), | 91 filtered_clear_pow_(new float[bank_size_]), |
95 filtered_noise_pow_(new float[bank_size_]), | 92 filtered_noise_pow_(new float[bank_size_]), |
96 center_freqs_(new float[bank_size_]), | 93 center_freqs_(new float[bank_size_]), |
97 render_filter_bank_(CreateErbBank(freqs_)), | 94 render_filter_bank_(CreateErbBank(freqs_)), |
98 rho_(new float[bank_size_]), | |
99 gains_eq_(new float[bank_size_]), | 95 gains_eq_(new float[bank_size_]), |
100 gain_applier_(freqs_, config.gain_change_limit), | 96 gain_applier_(freqs_, kMaxRelativeGainChange), |
101 temp_render_out_buffer_(chunk_length_, num_render_channels_), | 97 temp_render_out_buffer_(chunk_length_, num_render_channels_), |
102 kbd_window_(new float[window_size_]), | |
103 render_callback_(this), | 98 render_callback_(this), |
104 block_count_(0), | 99 audio_s16_(chunk_length_), |
105 analysis_step_(0) { | 100 chunks_since_voice_(kSpeechOffsetDelay), |
106 RTC_DCHECK_LE(config.rho, 1.0f); | 101 is_speech_(false) { |
| 102 RTC_DCHECK_LE(kRho, 1.f); |
107 | 103 |
108 memset(filtered_clear_pow_.get(), | 104 memset(filtered_clear_pow_.get(), 0, |
109 0, | |
110 bank_size_ * sizeof(filtered_clear_pow_[0])); | 105 bank_size_ * sizeof(filtered_clear_pow_[0])); |
111 memset(filtered_noise_pow_.get(), | 106 memset(filtered_noise_pow_.get(), 0, |
112 0, | |
113 bank_size_ * sizeof(filtered_noise_pow_[0])); | 107 bank_size_ * sizeof(filtered_noise_pow_[0])); |
114 | 108 |
115 // Assumes all rho equal. | 109 const size_t erb_index = static_cast<size_t>( |
116 for (size_t i = 0; i < bank_size_; ++i) { | 110 ceilf(11.17f * logf((kClipFreqKhz + 0.312f) / (kClipFreqKhz + 14.6575f)) + |
117 rho_[i] = config.rho * config.rho; | 111 43.f)); |
118 } | 112 start_freq_ = std::max(static_cast<size_t>(1), erb_index * kErbResolution); |
119 | 113 |
120 float freqs_khz = kClipFreq / 1000.0f; | 114 size_t window_size = static_cast<size_t>(1 << RealFourier::FftOrder(freqs_)); |
121 size_t erb_index = static_cast<size_t>(ceilf( | 115 std::vector<float> kbd_window(window_size); |
122 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); | 116 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size, &kbd_window[0]); |
123 start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_); | |
124 | |
125 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, | |
126 kbd_window_.get()); | |
127 render_mangler_.reset(new LappedTransform( | 117 render_mangler_.reset(new LappedTransform( |
128 num_render_channels_, num_render_channels_, chunk_length_, | 118 num_render_channels_, num_render_channels_, chunk_length_, &kbd_window[0], |
129 kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_)); | 119 window_size, window_size / 2, &render_callback_)); |
130 } | 120 } |
131 | 121 |
132 void IntelligibilityEnhancer::SetCaptureNoiseEstimate( | 122 void IntelligibilityEnhancer::SetCaptureNoiseEstimate( |
133 std::vector<float> noise) { | 123 std::vector<float> noise) { |
134 if (capture_filter_bank_.size() != bank_size_ || | 124 if (capture_filter_bank_.size() != bank_size_ || |
135 capture_filter_bank_[0].size() != noise.size()) { | 125 capture_filter_bank_[0].size() != noise.size()) { |
136 capture_filter_bank_ = CreateErbBank(noise.size()); | 126 capture_filter_bank_ = CreateErbBank(noise.size()); |
| 127 noise_power_estimator_.reset( |
| 128 new intelligibility::PowerEstimator<float>(noise.size(), kDecayRate)); |
137 } | 129 } |
138 if (noise.size() != noise_power_.size()) { | 130 noise_power_estimator_->Step(&noise[0]); |
139 noise_power_.resize(noise.size()); | |
140 } | |
141 for (size_t i = 0; i < noise.size(); ++i) { | |
142 noise_power_[i] = noise[i] * noise[i]; | |
143 } | |
144 } | 131 } |
145 | 132 |
146 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, | 133 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, |
147 int sample_rate_hz, | 134 int sample_rate_hz, |
148 size_t num_channels) { | 135 size_t num_channels) { |
149 RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); | 136 RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); |
150 RTC_CHECK_EQ(num_render_channels_, num_channels); | 137 RTC_CHECK_EQ(num_render_channels_, num_channels); |
151 | 138 is_speech_ = IsSpeech(audio[0]); |
152 if (active_) { | 139 render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); |
153 render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); | 140 for (size_t i = 0; i < num_render_channels_; ++i) { |
154 } | 141 memcpy(audio[i], temp_render_out_buffer_.channels()[i], |
155 | 142 chunk_length_ * sizeof(**audio)); |
156 if (active_) { | |
157 for (size_t i = 0; i < num_render_channels_; ++i) { | |
158 memcpy(audio[i], temp_render_out_buffer_.channels()[i], | |
159 chunk_length_ * sizeof(**audio)); | |
160 } | |
161 } | 143 } |
162 } | 144 } |
163 | 145 |
164 void IntelligibilityEnhancer::ProcessClearBlock( | 146 void IntelligibilityEnhancer::ProcessClearBlock( |
165 const std::complex<float>* in_block, | 147 const std::complex<float>* in_block, |
166 std::complex<float>* out_block) { | 148 std::complex<float>* out_block) { |
167 if (block_count_ < 2) { | 149 if (is_speech_) { |
168 memset(out_block, 0, freqs_ * sizeof(*out_block)); | 150 clear_power_estimator_.Step(in_block); |
169 ++block_count_; | |
170 return; | |
171 } | 151 } |
172 | 152 const std::vector<float>& clear_power = clear_power_estimator_.power(); |
173 // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary. | 153 const std::vector<float>& noise_power = noise_power_estimator_->power(); |
174 if (true) { | 154 MapToErbBands(&clear_power[0], render_filter_bank_, |
175 clear_power_.Step(in_block); | |
176 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { | |
177 AnalyzeClearBlock(); | |
178 ++analysis_step_; | |
179 } | |
180 ++block_count_; | |
181 } | |
182 | |
183 if (active_) { | |
184 gain_applier_.Apply(in_block, out_block); | |
185 } | |
186 } | |
187 | |
188 void IntelligibilityEnhancer::AnalyzeClearBlock() { | |
189 const float* clear_power = clear_power_.Power(); | |
190 MapToErbBands(clear_power, | |
191 render_filter_bank_, | |
192 filtered_clear_pow_.get()); | 155 filtered_clear_pow_.get()); |
193 MapToErbBands(&noise_power_[0], | 156 MapToErbBands(&noise_power[0], capture_filter_bank_, |
194 capture_filter_bank_, | |
195 filtered_noise_pow_.get()); | 157 filtered_noise_pow_.get()); |
196 SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); | 158 SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); |
197 const float power_target = std::accumulate( | 159 const float power_target = |
198 clear_power, clear_power + freqs_, 0.f); | 160 std::accumulate(&clear_power[0], &clear_power[0] + freqs_, 0.f); |
199 const float power_top = | 161 const float power_top = |
200 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); | 162 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
201 SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); | 163 SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); |
202 const float power_bot = | 164 const float power_bot = |
203 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); | 165 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
204 if (power_target >= power_bot && power_target <= power_top) { | 166 if (power_target >= power_bot && power_target <= power_top) { |
205 SolveForLambda(power_target, power_bot, power_top); | 167 SolveForLambda(power_target, power_bot, power_top); |
206 UpdateErbGains(); | 168 UpdateErbGains(); |
207 } // Else experiencing power underflow, so do nothing. | 169 } // Else experiencing power underflow, so do nothing. |
| 170 gain_applier_.Apply(in_block, out_block); |
208 } | 171 } |
209 | 172 |
210 void IntelligibilityEnhancer::SolveForLambda(float power_target, | 173 void IntelligibilityEnhancer::SolveForLambda(float power_target, |
211 float power_bot, | 174 float power_bot, |
212 float power_top) { | 175 float power_top) { |
213 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values | 176 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values |
214 const int kMaxIters = 100; // for these, based on experiments. | 177 const int kMaxIters = 100; // for these, based on experiments. |
215 | 178 |
216 const float reciprocal_power_target = | 179 const float reciprocal_power_target = |
217 1.f / (power_target + std::numeric_limits<float>::epsilon()); | 180 1.f / (power_target + std::numeric_limits<float>::epsilon()); |
218 float lambda_bot = kLambdaBot; | 181 float lambda_bot = kLambdaBot; |
219 float lambda_top = kLambdaTop; | 182 float lambda_top = kLambdaTop; |
220 float power_ratio = 2.0f; // Ratio of achieved power to target power. | 183 float power_ratio = 2.f; // Ratio of achieved power to target power. |
221 int iters = 0; | 184 int iters = 0; |
222 while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && | 185 while (std::fabs(power_ratio - 1.f) > kConvergeThresh && iters <= kMaxIters) { |
223 iters <= kMaxIters) { | 186 const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.f; |
224 const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; | |
225 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); | 187 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); |
226 const float power = | 188 const float power = |
227 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); | 189 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); |
228 if (power < power_target) { | 190 if (power < power_target) { |
229 lambda_bot = lambda; | 191 lambda_bot = lambda; |
230 } else { | 192 } else { |
231 lambda_top = lambda; | 193 lambda_top = lambda; |
232 } | 194 } |
233 power_ratio = std::fabs(power * reciprocal_power_target); | 195 power_ratio = std::fabs(power * reciprocal_power_target); |
234 ++iters; | 196 ++iters; |
235 } | 197 } |
236 } | 198 } |
237 | 199 |
238 void IntelligibilityEnhancer::UpdateErbGains() { | 200 void IntelligibilityEnhancer::UpdateErbGains() { |
239 // (ERB gain) = filterbank' * (freq gain) | 201 // (ERB gain) = filterbank' * (freq gain) |
240 float* gains = gain_applier_.target(); | 202 float* gains = gain_applier_.target(); |
241 for (size_t i = 0; i < freqs_; ++i) { | 203 for (size_t i = 0; i < freqs_; ++i) { |
242 gains[i] = 0.0f; | 204 gains[i] = 0.f; |
243 for (size_t j = 0; j < bank_size_; ++j) { | 205 for (size_t j = 0; j < bank_size_; ++j) { |
244 gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]); | 206 gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]); |
245 } | 207 } |
246 } | 208 } |
247 } | 209 } |
248 | 210 |
249 size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, | 211 size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, |
250 size_t erb_resolution) { | 212 size_t erb_resolution) { |
251 float freq_limit = sample_rate / 2000.0f; | 213 float freq_limit = sample_rate / 2000.f; |
252 size_t erb_scale = static_cast<size_t>(ceilf( | 214 size_t erb_scale = static_cast<size_t>(ceilf( |
253 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f)); | 215 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f)); |
254 return erb_scale * erb_resolution; | 216 return erb_scale * erb_resolution; |
255 } | 217 } |
256 | 218 |
257 std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank( | 219 std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank( |
258 size_t num_freqs) { | 220 size_t num_freqs) { |
259 std::vector<std::vector<float>> filter_bank(bank_size_); | 221 std::vector<std::vector<float>> filter_bank(bank_size_); |
260 size_t lf = 1, rf = 4; | 222 size_t lf = 1, rf = 4; |
261 | 223 |
262 for (size_t i = 0; i < bank_size_; ++i) { | 224 for (size_t i = 0; i < bank_size_; ++i) { |
263 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); | 225 float abs_temp = fabsf((i + 1.f) / static_cast<float>(kErbResolution)); |
264 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); | 226 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); |
265 center_freqs_[i] -= 14678.49f; | 227 center_freqs_[i] -= 14678.49f; |
266 } | 228 } |
267 float last_center_freq = center_freqs_[bank_size_ - 1]; | 229 float last_center_freq = center_freqs_[bank_size_ - 1]; |
268 for (size_t i = 0; i < bank_size_; ++i) { | 230 for (size_t i = 0; i < bank_size_; ++i) { |
269 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; | 231 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; |
270 } | 232 } |
271 | 233 |
272 for (size_t i = 0; i < bank_size_; ++i) { | 234 for (size_t i = 0; i < bank_size_; ++i) { |
273 filter_bank[i].resize(num_freqs); | 235 filter_bank[i].resize(num_freqs); |
274 } | 236 } |
275 | 237 |
276 for (size_t i = 1; i <= bank_size_; ++i) { | 238 for (size_t i = 1; i <= bank_size_; ++i) { |
277 size_t lll, ll, rr, rrr; | |
278 static const size_t kOne = 1; // Avoids repeated static_cast<>s below. | 239 static const size_t kOne = 1; // Avoids repeated static_cast<>s below. |
279 lll = static_cast<size_t>(round( | 240 size_t lll = |
280 center_freqs_[std::max(kOne, i - lf) - 1] * num_freqs / | 241 static_cast<size_t>(round(center_freqs_[std::max(kOne, i - lf) - 1] * |
281 (0.5f * sample_rate_hz_))); | 242 num_freqs / (0.5f * sample_rate_hz_))); |
282 ll = static_cast<size_t>(round( | 243 size_t ll = static_cast<size_t>(round(center_freqs_[std::max(kOne, i) - 1] * |
283 center_freqs_[std::max(kOne, i) - 1] * num_freqs / | 244 num_freqs / (0.5f * sample_rate_hz_))); |
284 (0.5f * sample_rate_hz_))); | |
285 lll = std::min(num_freqs, std::max(lll, kOne)) - 1; | 245 lll = std::min(num_freqs, std::max(lll, kOne)) - 1; |
286 ll = std::min(num_freqs, std::max(ll, kOne)) - 1; | 246 ll = std::min(num_freqs, std::max(ll, kOne)) - 1; |
287 | 247 |
288 rrr = static_cast<size_t>(round( | 248 size_t rrr = static_cast<size_t>( |
289 center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / | 249 round(center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / |
290 (0.5f * sample_rate_hz_))); | 250 (0.5f * sample_rate_hz_))); |
291 rr = static_cast<size_t>(round( | 251 size_t rr = static_cast<size_t>( |
292 center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / | 252 round(center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / |
293 (0.5f * sample_rate_hz_))); | 253 (0.5f * sample_rate_hz_))); |
294 rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1; | 254 rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1; |
295 rr = std::min(num_freqs, std::max(rr, kOne)) - 1; | 255 rr = std::min(num_freqs, std::max(rr, kOne)) - 1; |
296 | 256 |
297 float step, element; | 257 float step = ll == lll ? 0.f : 1.f / (ll - lll); |
298 | 258 float element = 0.f; |
299 step = ll == lll ? 0.f : 1.f / (ll - lll); | |
300 element = 0.0f; | |
301 for (size_t j = lll; j <= ll; ++j) { | 259 for (size_t j = lll; j <= ll; ++j) { |
302 filter_bank[i - 1][j] = element; | 260 filter_bank[i - 1][j] = element; |
303 element += step; | 261 element += step; |
304 } | 262 } |
305 step = rr == rrr ? 0.f : 1.f / (rrr - rr); | 263 step = rr == rrr ? 0.f : 1.f / (rrr - rr); |
306 element = 1.0f; | 264 element = 1.f; |
307 for (size_t j = rr; j <= rrr; ++j) { | 265 for (size_t j = rr; j <= rrr; ++j) { |
308 filter_bank[i - 1][j] = element; | 266 filter_bank[i - 1][j] = element; |
309 element -= step; | 267 element -= step; |
310 } | 268 } |
311 for (size_t j = ll; j <= rr; ++j) { | 269 for (size_t j = ll; j <= rr; ++j) { |
312 filter_bank[i - 1][j] = 1.0f; | 270 filter_bank[i - 1][j] = 1.f; |
313 } | 271 } |
314 } | 272 } |
315 | 273 |
316 float sum; | |
317 for (size_t i = 0; i < num_freqs; ++i) { | 274 for (size_t i = 0; i < num_freqs; ++i) { |
318 sum = 0.0f; | 275 float sum = 0.f; |
319 for (size_t j = 0; j < bank_size_; ++j) { | 276 for (size_t j = 0; j < bank_size_; ++j) { |
320 sum += filter_bank[j][i]; | 277 sum += filter_bank[j][i]; |
321 } | 278 } |
322 for (size_t j = 0; j < bank_size_; ++j) { | 279 for (size_t j = 0; j < bank_size_; ++j) { |
323 filter_bank[j][i] /= sum; | 280 filter_bank[j][i] /= sum; |
324 } | 281 } |
325 } | 282 } |
326 return filter_bank; | 283 return filter_bank; |
327 } | 284 } |
328 | 285 |
329 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, | 286 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, |
330 size_t start_freq, | 287 size_t start_freq, |
331 float* sols) { | 288 float* sols) { |
332 bool quadratic = (kConfigRho < 1.0f); | 289 bool quadratic = (kRho < 1.f); |
333 const float* pow_x0 = filtered_clear_pow_.get(); | 290 const float* pow_x0 = filtered_clear_pow_.get(); |
334 const float* pow_n0 = filtered_noise_pow_.get(); | 291 const float* pow_n0 = filtered_noise_pow_.get(); |
335 | 292 |
336 for (size_t n = 0; n < start_freq; ++n) { | 293 for (size_t n = 0; n < start_freq; ++n) { |
337 sols[n] = 1.0f; | 294 sols[n] = 1.f; |
338 } | 295 } |
339 | 296 |
340 // Analytic solution for optimal gains. See paper for derivation. | 297 // Analytic solution for optimal gains. See paper for derivation. |
341 for (size_t n = start_freq - 1; n < bank_size_; ++n) { | 298 for (size_t n = start_freq - 1; n < bank_size_; ++n) { |
342 float alpha0, beta0, gamma0; | 299 float alpha0, beta0, gamma0; |
343 gamma0 = 0.5f * rho_[n] * pow_x0[n] * pow_n0[n] + | 300 gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] + |
344 lambda * pow_x0[n] * pow_n0[n] * pow_n0[n]; | 301 lambda * pow_x0[n] * pow_n0[n] * pow_n0[n]; |
345 beta0 = lambda * pow_x0[n] * (2 - rho_[n]) * pow_x0[n] * pow_n0[n]; | 302 beta0 = lambda * pow_x0[n] * (2 - kRho) * pow_x0[n] * pow_n0[n]; |
346 if (quadratic) { | 303 if (quadratic) { |
347 alpha0 = lambda * pow_x0[n] * (1 - rho_[n]) * pow_x0[n] * pow_x0[n]; | 304 alpha0 = lambda * pow_x0[n] * (1 - kRho) * pow_x0[n] * pow_x0[n]; |
348 sols[n] = | 305 sols[n] = |
349 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / | 306 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / |
350 (2 * alpha0 + std::numeric_limits<float>::epsilon()); | 307 (2 * alpha0 + std::numeric_limits<float>::epsilon()); |
351 } else { | 308 } else { |
352 sols[n] = -gamma0 / beta0; | 309 sols[n] = -gamma0 / beta0; |
353 } | 310 } |
354 sols[n] = fmax(0, sols[n]); | 311 sols[n] = fmax(0, sols[n]); |
355 } | 312 } |
356 } | 313 } |
357 | 314 |
358 bool IntelligibilityEnhancer::active() const { | 315 bool IntelligibilityEnhancer::IsSpeech(const float* audio) { |
359 return active_; | 316 FloatToS16(audio, chunk_length_, &audio_s16_[0]); |
| 317 vad_.ProcessChunk(&audio_s16_[0], chunk_length_, sample_rate_hz_); |
| 318 if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) { |
| 319 chunks_since_voice_ = 0; |
| 320 } else if (chunks_since_voice_ < kSpeechOffsetDelay) { |
| 321 ++chunks_since_voice_; |
| 322 } |
| 323 return chunks_since_voice_ < kSpeechOffsetDelay; |
360 } | 324 } |
361 | 325 |
362 } // namespace webrtc | 326 } // namespace webrtc |
OLD | NEW |