Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(861)

Side by Side Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc

Issue 1693823004: Use VAD to get a better speech power estimation in the IntelligibilityEnhancer (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@pow
Patch Set: Use f for float Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h" 11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhanc er.h"
12 12
13 #include <math.h> 13 #include <math.h>
14 #include <stdlib.h> 14 #include <stdlib.h>
15 #include <algorithm> 15 #include <algorithm>
16 #include <limits> 16 #include <limits>
17 #include <numeric> 17 #include <numeric>
18 18
19 #include "webrtc/base/checks.h" 19 #include "webrtc/base/checks.h"
20 #include "webrtc/common_audio/include/audio_util.h" 20 #include "webrtc/common_audio/include/audio_util.h"
21 #include "webrtc/common_audio/window_generator.h" 21 #include "webrtc/common_audio/window_generator.h"
22 22
23 namespace webrtc { 23 namespace webrtc {
24 24
25 namespace { 25 namespace {
26 26
27 const size_t kErbResolution = 2; 27 const size_t kErbResolution = 2;
28 const int kWindowSizeMs = 16; 28 const int kWindowSizeMs = 16;
29 const int kChunkSizeMs = 10; // Size provided by APM. 29 const int kChunkSizeMs = 10; // Size provided by APM.
30 const float kClipFreq = 200.0f; 30 const float kClipFreqKhz = 0.2f;
31 const float kConfigRho = 0.02f; // Default production and interpretation SNR.
32 const float kKbdAlpha = 1.5f; 31 const float kKbdAlpha = 1.5f;
33 const float kLambdaBot = -1.0f; // Extreme values in bisection 32 const float kLambdaBot = -1.0f; // Extreme values in bisection
34 const float kLambdaTop = -10e-18f; // search for lamda. 33 const float kLambdaTop = -10e-18f; // search for lamda.
34 const float kVoiceProbabilityThreshold = 0.02f;
35 // Number of chunks after voice activity which is still considered speech.
36 const size_t kSpeechOffsetDelay = 80;
37 const float kDecayRate = 0.98f; // Power estimation decay rate.
38 const float kMaxRelativeGainChange = 0.04f; // Maximum relative change in gain.
39 const float kRho = 0.0004f; // Default production and interpretation SNR.
35 40
36 // Returns dot product of vectors |a| and |b| with size |length|. 41 // Returns dot product of vectors |a| and |b| with size |length|.
37 float DotProduct(const float* a, const float* b, size_t length) { 42 float DotProduct(const float* a, const float* b, size_t length) {
38 float ret = 0.f; 43 float ret = 0.f;
39 for (size_t i = 0; i < length; ++i) { 44 for (size_t i = 0; i < length; ++i) {
40 ret = fmaf(a[i], b[i], ret); 45 ret = fmaf(a[i], b[i], ret);
41 } 46 }
42 return ret; 47 return ret;
43 } 48 }
44 49
(...skipping 20 matching lines...) Expand all
65 size_t in_channels, 70 size_t in_channels,
66 size_t frames, 71 size_t frames,
67 size_t /* out_channels */, 72 size_t /* out_channels */,
68 std::complex<float>* const* out_block) { 73 std::complex<float>* const* out_block) {
69 RTC_DCHECK_EQ(parent_->freqs_, frames); 74 RTC_DCHECK_EQ(parent_->freqs_, frames);
70 for (size_t i = 0; i < in_channels; ++i) { 75 for (size_t i = 0; i < in_channels; ++i) {
71 parent_->ProcessClearBlock(in_block[i], out_block[i]); 76 parent_->ProcessClearBlock(in_block[i], out_block[i]);
72 } 77 }
73 } 78 }
74 79
75 IntelligibilityEnhancer::IntelligibilityEnhancer() 80 IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz,
76 : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) { 81 size_t num_render_channels)
77 }
78
79 IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config)
80 : freqs_(RealFourier::ComplexLength( 82 : freqs_(RealFourier::ComplexLength(
81 RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))), 83 RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))),
82 window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))), 84 chunk_length_(static_cast<size_t>(sample_rate_hz * kChunkSizeMs / 1000)),
83 chunk_length_( 85 bank_size_(GetBankSize(sample_rate_hz, kErbResolution)),
84 static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)), 86 sample_rate_hz_(sample_rate_hz),
85 bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)), 87 num_render_channels_(num_render_channels),
86 sample_rate_hz_(config.sample_rate_hz), 88 clear_power_estimator_(freqs_, kDecayRate),
87 erb_resolution_(kErbResolution), 89 noise_power_estimator_(
88 num_capture_channels_(config.num_capture_channels), 90 new intelligibility::PowerEstimator<float>(freqs_, kDecayRate)),
89 num_render_channels_(config.num_render_channels),
90 analysis_rate_(config.analysis_rate),
91 active_(true),
92 clear_power_(freqs_, config.decay_rate),
93 noise_power_(freqs_, 0.f),
94 filtered_clear_pow_(new float[bank_size_]), 91 filtered_clear_pow_(new float[bank_size_]),
95 filtered_noise_pow_(new float[bank_size_]), 92 filtered_noise_pow_(new float[bank_size_]),
96 center_freqs_(new float[bank_size_]), 93 center_freqs_(new float[bank_size_]),
97 render_filter_bank_(CreateErbBank(freqs_)), 94 render_filter_bank_(CreateErbBank(freqs_)),
98 rho_(new float[bank_size_]),
99 gains_eq_(new float[bank_size_]), 95 gains_eq_(new float[bank_size_]),
100 gain_applier_(freqs_, config.gain_change_limit), 96 gain_applier_(freqs_, kMaxRelativeGainChange),
101 temp_render_out_buffer_(chunk_length_, num_render_channels_), 97 temp_render_out_buffer_(chunk_length_, num_render_channels_),
102 kbd_window_(new float[window_size_]),
103 render_callback_(this), 98 render_callback_(this),
104 block_count_(0), 99 audio_s16_(chunk_length_),
105 analysis_step_(0) { 100 chunks_since_voice_(kSpeechOffsetDelay),
106 RTC_DCHECK_LE(config.rho, 1.0f); 101 is_speech_(false) {
102 RTC_DCHECK_LE(kRho, 1.f);
107 103
108 memset(filtered_clear_pow_.get(), 104 memset(filtered_clear_pow_.get(), 0,
109 0,
110 bank_size_ * sizeof(filtered_clear_pow_[0])); 105 bank_size_ * sizeof(filtered_clear_pow_[0]));
111 memset(filtered_noise_pow_.get(), 106 memset(filtered_noise_pow_.get(), 0,
112 0,
113 bank_size_ * sizeof(filtered_noise_pow_[0])); 107 bank_size_ * sizeof(filtered_noise_pow_[0]));
114 108
115 // Assumes all rho equal. 109 const size_t erb_index = static_cast<size_t>(
116 for (size_t i = 0; i < bank_size_; ++i) { 110 ceilf(11.17f * logf((kClipFreqKhz + 0.312f) / (kClipFreqKhz + 14.6575f)) +
117 rho_[i] = config.rho * config.rho; 111 43.f));
118 } 112 start_freq_ = std::max(static_cast<size_t>(1), erb_index * kErbResolution);
119 113
120 float freqs_khz = kClipFreq / 1000.0f; 114 size_t window_size = static_cast<size_t>(1 << RealFourier::FftOrder(freqs_));
121 size_t erb_index = static_cast<size_t>(ceilf( 115 std::vector<float> kbd_window(window_size);
122 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); 116 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size, &kbd_window[0]);
123 start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_);
124
125 WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_,
126 kbd_window_.get());
127 render_mangler_.reset(new LappedTransform( 117 render_mangler_.reset(new LappedTransform(
128 num_render_channels_, num_render_channels_, chunk_length_, 118 num_render_channels_, num_render_channels_, chunk_length_, &kbd_window[0],
129 kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_)); 119 window_size, window_size / 2, &render_callback_));
130 } 120 }
131 121
132 void IntelligibilityEnhancer::SetCaptureNoiseEstimate( 122 void IntelligibilityEnhancer::SetCaptureNoiseEstimate(
133 std::vector<float> noise) { 123 std::vector<float> noise) {
134 if (capture_filter_bank_.size() != bank_size_ || 124 if (capture_filter_bank_.size() != bank_size_ ||
135 capture_filter_bank_[0].size() != noise.size()) { 125 capture_filter_bank_[0].size() != noise.size()) {
136 capture_filter_bank_ = CreateErbBank(noise.size()); 126 capture_filter_bank_ = CreateErbBank(noise.size());
127 noise_power_estimator_.reset(
128 new intelligibility::PowerEstimator<float>(noise.size(), kDecayRate));
137 } 129 }
138 if (noise.size() != noise_power_.size()) { 130 noise_power_estimator_->Step(&noise[0]);
139 noise_power_.resize(noise.size());
140 }
141 for (size_t i = 0; i < noise.size(); ++i) {
142 noise_power_[i] = noise[i] * noise[i];
143 }
144 } 131 }
145 132
146 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, 133 void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio,
147 int sample_rate_hz, 134 int sample_rate_hz,
148 size_t num_channels) { 135 size_t num_channels) {
149 RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); 136 RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz);
150 RTC_CHECK_EQ(num_render_channels_, num_channels); 137 RTC_CHECK_EQ(num_render_channels_, num_channels);
151 138 is_speech_ = IsSpeech(audio[0]);
152 if (active_) { 139 render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels());
153 render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); 140 for (size_t i = 0; i < num_render_channels_; ++i) {
154 } 141 memcpy(audio[i], temp_render_out_buffer_.channels()[i],
155 142 chunk_length_ * sizeof(**audio));
156 if (active_) {
157 for (size_t i = 0; i < num_render_channels_; ++i) {
158 memcpy(audio[i], temp_render_out_buffer_.channels()[i],
159 chunk_length_ * sizeof(**audio));
160 }
161 } 143 }
162 } 144 }
163 145
164 void IntelligibilityEnhancer::ProcessClearBlock( 146 void IntelligibilityEnhancer::ProcessClearBlock(
165 const std::complex<float>* in_block, 147 const std::complex<float>* in_block,
166 std::complex<float>* out_block) { 148 std::complex<float>* out_block) {
167 if (block_count_ < 2) { 149 if (is_speech_) {
168 memset(out_block, 0, freqs_ * sizeof(*out_block)); 150 clear_power_estimator_.Step(in_block);
169 ++block_count_;
170 return;
171 } 151 }
172 152 const std::vector<float>& clear_power = clear_power_estimator_.power();
173 // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary. 153 const std::vector<float>& noise_power = noise_power_estimator_->power();
174 if (true) { 154 MapToErbBands(&clear_power[0], render_filter_bank_,
175 clear_power_.Step(in_block);
176 if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
177 AnalyzeClearBlock();
178 ++analysis_step_;
179 }
180 ++block_count_;
181 }
182
183 if (active_) {
184 gain_applier_.Apply(in_block, out_block);
185 }
186 }
187
188 void IntelligibilityEnhancer::AnalyzeClearBlock() {
189 const float* clear_power = clear_power_.Power();
190 MapToErbBands(clear_power,
191 render_filter_bank_,
192 filtered_clear_pow_.get()); 155 filtered_clear_pow_.get());
193 MapToErbBands(&noise_power_[0], 156 MapToErbBands(&noise_power[0], capture_filter_bank_,
194 capture_filter_bank_,
195 filtered_noise_pow_.get()); 157 filtered_noise_pow_.get());
196 SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); 158 SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get());
197 const float power_target = std::accumulate( 159 const float power_target =
198 clear_power, clear_power + freqs_, 0.f); 160 std::accumulate(&clear_power[0], &clear_power[0] + freqs_, 0.f);
199 const float power_top = 161 const float power_top =
200 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); 162 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
201 SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); 163 SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get());
202 const float power_bot = 164 const float power_bot =
203 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); 165 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
204 if (power_target >= power_bot && power_target <= power_top) { 166 if (power_target >= power_bot && power_target <= power_top) {
205 SolveForLambda(power_target, power_bot, power_top); 167 SolveForLambda(power_target, power_bot, power_top);
206 UpdateErbGains(); 168 UpdateErbGains();
207 } // Else experiencing power underflow, so do nothing. 169 } // Else experiencing power underflow, so do nothing.
170 gain_applier_.Apply(in_block, out_block);
208 } 171 }
209 172
210 void IntelligibilityEnhancer::SolveForLambda(float power_target, 173 void IntelligibilityEnhancer::SolveForLambda(float power_target,
211 float power_bot, 174 float power_bot,
212 float power_top) { 175 float power_top) {
213 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values 176 const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values
214 const int kMaxIters = 100; // for these, based on experiments. 177 const int kMaxIters = 100; // for these, based on experiments.
215 178
216 const float reciprocal_power_target = 179 const float reciprocal_power_target =
217 1.f / (power_target + std::numeric_limits<float>::epsilon()); 180 1.f / (power_target + std::numeric_limits<float>::epsilon());
218 float lambda_bot = kLambdaBot; 181 float lambda_bot = kLambdaBot;
219 float lambda_top = kLambdaTop; 182 float lambda_top = kLambdaTop;
220 float power_ratio = 2.0f; // Ratio of achieved power to target power. 183 float power_ratio = 2.f; // Ratio of achieved power to target power.
221 int iters = 0; 184 int iters = 0;
222 while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && 185 while (std::fabs(power_ratio - 1.f) > kConvergeThresh && iters <= kMaxIters) {
223 iters <= kMaxIters) { 186 const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.f;
224 const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
225 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); 187 SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get());
226 const float power = 188 const float power =
227 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); 189 DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
228 if (power < power_target) { 190 if (power < power_target) {
229 lambda_bot = lambda; 191 lambda_bot = lambda;
230 } else { 192 } else {
231 lambda_top = lambda; 193 lambda_top = lambda;
232 } 194 }
233 power_ratio = std::fabs(power * reciprocal_power_target); 195 power_ratio = std::fabs(power * reciprocal_power_target);
234 ++iters; 196 ++iters;
235 } 197 }
236 } 198 }
237 199
238 void IntelligibilityEnhancer::UpdateErbGains() { 200 void IntelligibilityEnhancer::UpdateErbGains() {
239 // (ERB gain) = filterbank' * (freq gain) 201 // (ERB gain) = filterbank' * (freq gain)
240 float* gains = gain_applier_.target(); 202 float* gains = gain_applier_.target();
241 for (size_t i = 0; i < freqs_; ++i) { 203 for (size_t i = 0; i < freqs_; ++i) {
242 gains[i] = 0.0f; 204 gains[i] = 0.f;
243 for (size_t j = 0; j < bank_size_; ++j) { 205 for (size_t j = 0; j < bank_size_; ++j) {
244 gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]); 206 gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]);
245 } 207 }
246 } 208 }
247 } 209 }
248 210
249 size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, 211 size_t IntelligibilityEnhancer::GetBankSize(int sample_rate,
250 size_t erb_resolution) { 212 size_t erb_resolution) {
251 float freq_limit = sample_rate / 2000.0f; 213 float freq_limit = sample_rate / 2000.f;
252 size_t erb_scale = static_cast<size_t>(ceilf( 214 size_t erb_scale = static_cast<size_t>(ceilf(
253 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f)); 215 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f));
254 return erb_scale * erb_resolution; 216 return erb_scale * erb_resolution;
255 } 217 }
256 218
257 std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank( 219 std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank(
258 size_t num_freqs) { 220 size_t num_freqs) {
259 std::vector<std::vector<float>> filter_bank(bank_size_); 221 std::vector<std::vector<float>> filter_bank(bank_size_);
260 size_t lf = 1, rf = 4; 222 size_t lf = 1, rf = 4;
261 223
262 for (size_t i = 0; i < bank_size_; ++i) { 224 for (size_t i = 0; i < bank_size_; ++i) {
263 float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); 225 float abs_temp = fabsf((i + 1.f) / static_cast<float>(kErbResolution));
264 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); 226 center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
265 center_freqs_[i] -= 14678.49f; 227 center_freqs_[i] -= 14678.49f;
266 } 228 }
267 float last_center_freq = center_freqs_[bank_size_ - 1]; 229 float last_center_freq = center_freqs_[bank_size_ - 1];
268 for (size_t i = 0; i < bank_size_; ++i) { 230 for (size_t i = 0; i < bank_size_; ++i) {
269 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; 231 center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
270 } 232 }
271 233
272 for (size_t i = 0; i < bank_size_; ++i) { 234 for (size_t i = 0; i < bank_size_; ++i) {
273 filter_bank[i].resize(num_freqs); 235 filter_bank[i].resize(num_freqs);
274 } 236 }
275 237
276 for (size_t i = 1; i <= bank_size_; ++i) { 238 for (size_t i = 1; i <= bank_size_; ++i) {
277 size_t lll, ll, rr, rrr;
278 static const size_t kOne = 1; // Avoids repeated static_cast<>s below. 239 static const size_t kOne = 1; // Avoids repeated static_cast<>s below.
279 lll = static_cast<size_t>(round( 240 size_t lll =
280 center_freqs_[std::max(kOne, i - lf) - 1] * num_freqs / 241 static_cast<size_t>(round(center_freqs_[std::max(kOne, i - lf) - 1] *
281 (0.5f * sample_rate_hz_))); 242 num_freqs / (0.5f * sample_rate_hz_)));
282 ll = static_cast<size_t>(round( 243 size_t ll = static_cast<size_t>(round(center_freqs_[std::max(kOne, i) - 1] *
283 center_freqs_[std::max(kOne, i) - 1] * num_freqs / 244 num_freqs / (0.5f * sample_rate_hz_)));
284 (0.5f * sample_rate_hz_)));
285 lll = std::min(num_freqs, std::max(lll, kOne)) - 1; 245 lll = std::min(num_freqs, std::max(lll, kOne)) - 1;
286 ll = std::min(num_freqs, std::max(ll, kOne)) - 1; 246 ll = std::min(num_freqs, std::max(ll, kOne)) - 1;
287 247
288 rrr = static_cast<size_t>(round( 248 size_t rrr = static_cast<size_t>(
289 center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / 249 round(center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs /
290 (0.5f * sample_rate_hz_))); 250 (0.5f * sample_rate_hz_)));
291 rr = static_cast<size_t>(round( 251 size_t rr = static_cast<size_t>(
292 center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / 252 round(center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs /
293 (0.5f * sample_rate_hz_))); 253 (0.5f * sample_rate_hz_)));
294 rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1; 254 rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1;
295 rr = std::min(num_freqs, std::max(rr, kOne)) - 1; 255 rr = std::min(num_freqs, std::max(rr, kOne)) - 1;
296 256
297 float step, element; 257 float step = ll == lll ? 0.f : 1.f / (ll - lll);
298 258 float element = 0.f;
299 step = ll == lll ? 0.f : 1.f / (ll - lll);
300 element = 0.0f;
301 for (size_t j = lll; j <= ll; ++j) { 259 for (size_t j = lll; j <= ll; ++j) {
302 filter_bank[i - 1][j] = element; 260 filter_bank[i - 1][j] = element;
303 element += step; 261 element += step;
304 } 262 }
305 step = rr == rrr ? 0.f : 1.f / (rrr - rr); 263 step = rr == rrr ? 0.f : 1.f / (rrr - rr);
306 element = 1.0f; 264 element = 1.f;
307 for (size_t j = rr; j <= rrr; ++j) { 265 for (size_t j = rr; j <= rrr; ++j) {
308 filter_bank[i - 1][j] = element; 266 filter_bank[i - 1][j] = element;
309 element -= step; 267 element -= step;
310 } 268 }
311 for (size_t j = ll; j <= rr; ++j) { 269 for (size_t j = ll; j <= rr; ++j) {
312 filter_bank[i - 1][j] = 1.0f; 270 filter_bank[i - 1][j] = 1.f;
313 } 271 }
314 } 272 }
315 273
316 float sum;
317 for (size_t i = 0; i < num_freqs; ++i) { 274 for (size_t i = 0; i < num_freqs; ++i) {
318 sum = 0.0f; 275 float sum = 0.f;
319 for (size_t j = 0; j < bank_size_; ++j) { 276 for (size_t j = 0; j < bank_size_; ++j) {
320 sum += filter_bank[j][i]; 277 sum += filter_bank[j][i];
321 } 278 }
322 for (size_t j = 0; j < bank_size_; ++j) { 279 for (size_t j = 0; j < bank_size_; ++j) {
323 filter_bank[j][i] /= sum; 280 filter_bank[j][i] /= sum;
324 } 281 }
325 } 282 }
326 return filter_bank; 283 return filter_bank;
327 } 284 }
328 285
329 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, 286 void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
330 size_t start_freq, 287 size_t start_freq,
331 float* sols) { 288 float* sols) {
332 bool quadratic = (kConfigRho < 1.0f); 289 bool quadratic = (kRho < 1.f);
333 const float* pow_x0 = filtered_clear_pow_.get(); 290 const float* pow_x0 = filtered_clear_pow_.get();
334 const float* pow_n0 = filtered_noise_pow_.get(); 291 const float* pow_n0 = filtered_noise_pow_.get();
335 292
336 for (size_t n = 0; n < start_freq; ++n) { 293 for (size_t n = 0; n < start_freq; ++n) {
337 sols[n] = 1.0f; 294 sols[n] = 1.f;
338 } 295 }
339 296
340 // Analytic solution for optimal gains. See paper for derivation. 297 // Analytic solution for optimal gains. See paper for derivation.
341 for (size_t n = start_freq - 1; n < bank_size_; ++n) { 298 for (size_t n = start_freq - 1; n < bank_size_; ++n) {
342 float alpha0, beta0, gamma0; 299 float alpha0, beta0, gamma0;
343 gamma0 = 0.5f * rho_[n] * pow_x0[n] * pow_n0[n] + 300 gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] +
344 lambda * pow_x0[n] * pow_n0[n] * pow_n0[n]; 301 lambda * pow_x0[n] * pow_n0[n] * pow_n0[n];
345 beta0 = lambda * pow_x0[n] * (2 - rho_[n]) * pow_x0[n] * pow_n0[n]; 302 beta0 = lambda * pow_x0[n] * (2 - kRho) * pow_x0[n] * pow_n0[n];
346 if (quadratic) { 303 if (quadratic) {
347 alpha0 = lambda * pow_x0[n] * (1 - rho_[n]) * pow_x0[n] * pow_x0[n]; 304 alpha0 = lambda * pow_x0[n] * (1 - kRho) * pow_x0[n] * pow_x0[n];
348 sols[n] = 305 sols[n] =
349 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / 306 (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) /
350 (2 * alpha0 + std::numeric_limits<float>::epsilon()); 307 (2 * alpha0 + std::numeric_limits<float>::epsilon());
351 } else { 308 } else {
352 sols[n] = -gamma0 / beta0; 309 sols[n] = -gamma0 / beta0;
353 } 310 }
354 sols[n] = fmax(0, sols[n]); 311 sols[n] = fmax(0, sols[n]);
355 } 312 }
356 } 313 }
357 314
358 bool IntelligibilityEnhancer::active() const { 315 bool IntelligibilityEnhancer::IsSpeech(const float* audio) {
359 return active_; 316 FloatToS16(audio, chunk_length_, &audio_s16_[0]);
317 vad_.ProcessChunk(&audio_s16_[0], chunk_length_, sample_rate_hz_);
318 if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) {
319 chunks_since_voice_ = 0;
320 } else if (chunks_since_voice_ < kSpeechOffsetDelay) {
321 ++chunks_since_voice_;
322 }
323 return chunks_since_voice_ < kSpeechOffsetDelay;
360 } 324 }
361 325
362 } // namespace webrtc 326 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698