Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc |
index 9caa2eb0a158b6c0c54cdb00864bf5a3344df3c3..42fae582830fd245b5fc9cc415c0adfc43cadc9d 100644 |
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc |
@@ -8,173 +8,69 @@ |
* be found in the AUTHORS file in the root of the source tree. |
*/ |
-// |
-// Unit tests for intelligibility utils. |
-// |
- |
-#include <math.h> |
+#include <cmath> |
#include <complex> |
-#include <iostream> |
#include <vector> |
#include "testing/gtest/include/gtest/gtest.h" |
#include "webrtc/base/arraysize.h" |
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h" |
-using std::complex; |
-using std::vector; |
- |
namespace webrtc { |
-namespace intelligibility { |
- |
-vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) { |
- vector<vector<complex<float>>> data(samples); |
- for (int i = 0; i < samples; i++) { |
- for (int j = 0; j < freqs; j++) { |
+std::vector<std::vector<std::complex<float>>> GenerateTestData(size_t freqs, |
+ size_t samples) { |
+ std::vector<std::vector<std::complex<float>>> data(samples); |
+ for (size_t i = 0; i < samples; ++i) { |
+ for (size_t j = 0; j < freqs; ++j) { |
const float val = 0.99f / ((i + 1) * (j + 1)); |
- data[i].push_back(complex<float>(val, val)); |
+ data[i].push_back(std::complex<float>(val, val)); |
} |
} |
return data; |
} |
-// Tests UpdateFactor. |
-TEST(IntelligibilityUtilsTest, TestUpdateFactor) { |
- EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0)); |
- EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3)); |
- EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1)); |
- EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3)); |
- EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1)); |
-} |
- |
-// Tests zerofudge. |
-TEST(IntelligibilityUtilsTest, TestCplx) { |
- complex<float> t0(1.f, 0.f); |
- t0 = intelligibility::zerofudge(t0); |
- EXPECT_NE(t0.imag(), 0.f); |
- EXPECT_NE(t0.real(), 0.f); |
-} |
- |
-// Tests NewMean and AddToMean. |
-TEST(IntelligibilityUtilsTest, TestMeanUpdate) { |
- const complex<float> data[] = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}}; |
- const complex<float> means[] = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}}; |
- complex<float> mean(3, 8); |
- for (size_t i = 0; i < arraysize(data); i++) { |
- EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1)); |
- AddToMean(data[i], i + 1, &mean); |
- EXPECT_EQ(means[i], mean); |
- } |
-} |
- |
-// Tests VarianceArray, for all variance step types. |
-TEST(IntelligibilityUtilsTest, TestVarianceArray) { |
- const int kFreqs = 10; |
- const int kSamples = 100; |
- const int kWindowSize = 10; // Should pass for all kWindowSize > 1. |
+// Tests PowerEstimator, for all power step types. |
+TEST(IntelligibilityUtilsTest, TestPowerEstimator) { |
+ const size_t kFreqs = 10; |
+ const size_t kSamples = 100; |
const float kDecay = 0.5f; |
- vector<VarianceArray::StepType> step_types; |
- step_types.push_back(VarianceArray::kStepInfinite); |
- step_types.push_back(VarianceArray::kStepDecaying); |
- step_types.push_back(VarianceArray::kStepWindowed); |
- step_types.push_back(VarianceArray::kStepBlocked); |
- step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage); |
- const vector<vector<complex<float>>> test_data( |
+ const std::vector<std::vector<std::complex<float>>> test_data( |
GenerateTestData(kFreqs, kSamples)); |
- for (auto step_type : step_types) { |
- VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay); |
- EXPECT_EQ(0, variance_array.variance()[0]); |
- EXPECT_EQ(0, variance_array.array_mean()); |
- variance_array.ApplyScale(2.0f); |
- EXPECT_EQ(0, variance_array.variance()[0]); |
- EXPECT_EQ(0, variance_array.array_mean()); |
- |
- // Makes sure Step is doing something. |
- variance_array.Step(&test_data[0][0]); |
- for (int i = 1; i < kSamples; i++) { |
- variance_array.Step(&test_data[i][0]); |
- EXPECT_GE(variance_array.array_mean(), 0.0f); |
- EXPECT_LE(variance_array.array_mean(), 1.0f); |
- for (int j = 0; j < kFreqs; j++) { |
- EXPECT_GE(variance_array.variance()[j], 0.0f); |
- EXPECT_LE(variance_array.variance()[j], 1.0f); |
- } |
- } |
- variance_array.Clear(); |
- EXPECT_EQ(0, variance_array.variance()[0]); |
- EXPECT_EQ(0, variance_array.array_mean()); |
- } |
-} |
- |
-// Tests exact computation on synthetic data. |
-TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) { |
- // Exact, not unbiased estimates. |
- const float kTestVarianceBufferNotFull = 16.5f; |
- const float kTestVarianceBufferFull1 = 66.5f; |
- const float kTestVarianceBufferFull2 = 333.375f; |
- const int kFreqs = 2; |
- const int kSamples = 50; |
- const int kWindowSize = 2; |
- const float kDecay = 0.5f; |
- const float kMaxError = 0.0001f; |
- |
- VarianceArray variance_array( |
- kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay); |
- |
- vector<vector<complex<float>>> test_data(kSamples); |
- for (int i = 0; i < kSamples; i++) { |
- for (int j = 0; j < kFreqs; j++) { |
- if (i < 30) { |
- test_data[i].push_back(complex<float>(static_cast<float>(kSamples - i), |
- static_cast<float>(i + 1))); |
- } else { |
- test_data[i].push_back(complex<float>(0.f, 0.f)); |
- } |
- } |
- } |
- |
- for (int i = 0; i < kSamples; i++) { |
- variance_array.Step(&test_data[i][0]); |
- for (int j = 0; j < kFreqs; j++) { |
- if (i < 9) { // In utils, kWindowBlockSize = 10. |
- EXPECT_EQ(0, variance_array.variance()[j]); |
- } else if (i < 19) { |
- EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j], |
- kMaxError); |
- } else if (i < 39) { |
- EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j], |
- kMaxError); |
- } else if (i < 49) { |
- EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j], |
- kMaxError); |
- } else { |
- EXPECT_EQ(0, variance_array.variance()[j]); |
- } |
+ PowerEstimator power_estimator(kFreqs, kDecay); |
+ EXPECT_EQ(0, power_estimator.Power()[0]); |
+ |
+ // Makes sure Step is doing something. |
+ power_estimator.Step(&test_data[0][0]); |
+ for (size_t i = 1; i < kSamples; ++i) { |
+ power_estimator.Step(&test_data[i][0]); |
+ for (size_t j = 0; j < kFreqs; ++j) { |
+ const float* power = power_estimator.Power(); |
+ EXPECT_GE(power[j], 0.f); |
+ EXPECT_LE(power[j], 1.f); |
} |
} |
} |
// Tests gain applier. |
TEST(IntelligibilityUtilsTest, TestGainApplier) { |
- const int kFreqs = 10; |
- const int kSamples = 100; |
+ const size_t kFreqs = 10; |
+ const size_t kSamples = 100; |
const float kChangeLimit = 0.1f; |
GainApplier gain_applier(kFreqs, kChangeLimit); |
- const vector<vector<complex<float>>> in_data( |
+ const std::vector<std::vector<std::complex<float>>> in_data( |
GenerateTestData(kFreqs, kSamples)); |
- vector<vector<complex<float>>> out_data(GenerateTestData(kFreqs, kSamples)); |
- for (int i = 0; i < kSamples; i++) { |
+ std::vector<std::vector<std::complex<float>>> out_data(GenerateTestData( |
+ kFreqs, kSamples)); |
+ for (size_t i = 0; i < kSamples; ++i) { |
gain_applier.Apply(&in_data[i][0], &out_data[i][0]); |
- for (int j = 0; j < kFreqs; j++) { |
- EXPECT_GT(out_data[i][j].real(), 0.0f); |
- EXPECT_LT(out_data[i][j].real(), 1.0f); |
- EXPECT_GT(out_data[i][j].imag(), 0.0f); |
- EXPECT_LT(out_data[i][j].imag(), 1.0f); |
+ for (size_t j = 0; j < kFreqs; ++j) { |
+ EXPECT_GT(out_data[i][j].real(), 0.f); |
+ EXPECT_LT(out_data[i][j].real(), 1.f); |
+ EXPECT_GT(out_data[i][j].imag(), 0.f); |
+ EXPECT_LT(out_data[i][j].imag(), 1.f); |
} |
} |
} |
-} // namespace intelligibility |
- |
} // namespace webrtc |