Chromium Code Reviews| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
| index 7da9b957a422488957c00efd2f67b007dce617c0..db11abe6c0afc7d44d223ad5d647841047e4a25b 100644 |
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
| @@ -8,282 +8,51 @@ |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| -// |
| -// Implements helper functions and classes for intelligibility enhancement. |
| -// |
| - |
| #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h" |
| -#include <math.h> |
| -#include <stdlib.h> |
| -#include <string.h> |
| +#include <cmath> |
|
hlundin-webrtc
2016/02/15 13:48:57
Why did you change these?
aluebs-webrtc
2016/02/17 03:11:59
I realize it has nothing to do with this change an
hlundin-webrtc
2016/02/17 07:45:21
I am not sure we have an explicit policy, but I do
aluebs-webrtc
2016/02/17 23:37:59
I was not aware there was an effort to unify them
|
| +#include <cstdlib> |
| +#include <cstring> |
| #include <algorithm> |
| -using std::complex; |
| -using std::min; |
| - |
| namespace webrtc { |
| -namespace intelligibility { |
| +namespace { |
| +// Return |current| changed towards |target|, with the change being at most |
| +// |limit|. |
| float UpdateFactor(float target, float current, float limit) { |
| float delta = fabsf(target - current); |
| - float sign = copysign(1.0f, target - current); |
| + float sign = copysign(1.f, target - current); |
| return current + sign * fminf(delta, limit); |
| } |
| -float AddDitherIfZero(float value) { |
| - return value == 0.f ? std::rand() * 0.01f / RAND_MAX : value; |
| -} |
| - |
| -complex<float> zerofudge(complex<float> c) { |
| - return complex<float>(AddDitherIfZero(c.real()), AddDitherIfZero(c.imag())); |
| -} |
| - |
| -complex<float> NewMean(complex<float> mean, complex<float> data, size_t count) { |
| - return mean + (data - mean) / static_cast<float>(count); |
| -} |
| +} // namespace |
| -void AddToMean(complex<float> data, size_t count, complex<float>* mean) { |
| - (*mean) = NewMean(*mean, data, count); |
| -} |
| - |
| - |
| -static const size_t kWindowBlockSize = 10; |
| - |
| -VarianceArray::VarianceArray(size_t num_freqs, |
| - StepType type, |
| - size_t window_size, |
| - float decay) |
| - : running_mean_(new complex<float>[num_freqs]()), |
| - running_mean_sq_(new complex<float>[num_freqs]()), |
| - sub_running_mean_(new complex<float>[num_freqs]()), |
| - sub_running_mean_sq_(new complex<float>[num_freqs]()), |
| - variance_(new float[num_freqs]()), |
| - conj_sum_(new float[num_freqs]()), |
| +PowerEstimator::PowerEstimator(size_t num_freqs, |
| + float decay) |
| + : magnitude_(new float[num_freqs]()), |
| + power_(new float[num_freqs]()), |
| num_freqs_(num_freqs), |
| - window_size_(window_size), |
| - decay_(decay), |
| - history_cursor_(0), |
| - count_(0), |
| - array_mean_(0.0f), |
| - buffer_full_(false) { |
| - history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| - for (size_t i = 0; i < num_freqs_; ++i) { |
| - history_[i].reset(new complex<float>[window_size_]()); |
| - } |
| - subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| - for (size_t i = 0; i < num_freqs_; ++i) { |
| - subhistory_[i].reset(new complex<float>[window_size_]()); |
| - } |
| - subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]()); |
| - for (size_t i = 0; i < num_freqs_; ++i) { |
| - subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
| - } |
| - switch (type) { |
| - case kStepInfinite: |
| - step_func_ = &VarianceArray::InfiniteStep; |
| - break; |
| - case kStepDecaying: |
| - step_func_ = &VarianceArray::DecayStep; |
| - break; |
| - case kStepWindowed: |
| - step_func_ = &VarianceArray::WindowedStep; |
| - break; |
| - case kStepBlocked: |
| - step_func_ = &VarianceArray::BlockedStep; |
| - break; |
| - case kStepBlockBasedMovingAverage: |
| - step_func_ = &VarianceArray::BlockBasedMovingAverage; |
| - break; |
| - } |
| + decay_(decay) { |
| + memset(magnitude_.get(), 0, sizeof(*magnitude_.get()) * num_freqs_); |
| + memset(power_.get(), 0, sizeof(*power_.get()) * num_freqs_); |
| } |
| -// Compute the variance with Welford's algorithm, adding some fudge to |
| -// the input in case of all-zeroes. |
| -void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
| - array_mean_ = 0.0f; |
| - ++count_; |
| - for (size_t i = 0; i < num_freqs_; ++i) { |
| - complex<float> sample = data[i]; |
| - if (!skip_fudge) { |
| - sample = zerofudge(sample); |
| - } |
| - if (count_ == 1) { |
| - running_mean_[i] = sample; |
| - variance_[i] = 0.0f; |
| - } else { |
| - float old_sum = conj_sum_[i]; |
| - complex<float> old_mean = running_mean_[i]; |
| - running_mean_[i] = |
| - old_mean + (sample - old_mean) / static_cast<float>(count_); |
| - conj_sum_[i] = |
| - (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) |
| - .real(); |
| - variance_[i] = |
| - conj_sum_[i] / (count_ - 1); |
| - } |
| - array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| - } |
| -} |
| - |
| -// Compute the variance from the beginning, with exponential decaying of the |
| +// Compute the magnitude from the beginning, with exponential decaying of the |
| // series data. |
| -void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
| - array_mean_ = 0.0f; |
| - ++count_; |
| +void PowerEstimator::Step(const std::complex<float>* data) { |
| for (size_t i = 0; i < num_freqs_; ++i) { |
| - complex<float> sample = data[i]; |
| - sample = zerofudge(sample); |
| - |
| - if (count_ == 1) { |
| - running_mean_[i] = sample; |
| - running_mean_sq_[i] = sample * std::conj(sample); |
| - variance_[i] = 0.0f; |
| - } else { |
| - complex<float> prev = running_mean_[i]; |
| - complex<float> prev2 = running_mean_sq_[i]; |
| - running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; |
| - running_mean_sq_[i] = |
| - decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); |
| - variance_[i] = (running_mean_sq_[i] - |
| - running_mean_[i] * std::conj(running_mean_[i])).real(); |
| - } |
| - |
| - array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| + magnitude_[i] = decay_ * magnitude_[i] + |
| + (1.f - decay_) * std::abs(data[i]); |
| } |
| } |
| -// Windowed variance computation. On each step, the variances for the |
| -// window are recomputed from scratch, using Welford's algorithm. |
| -void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
| - size_t num = min(count_ + 1, window_size_); |
| - array_mean_ = 0.0f; |
| +const float* PowerEstimator::Power() { |
| for (size_t i = 0; i < num_freqs_; ++i) { |
| - complex<float> mean; |
| - float conj_sum = 0.0f; |
| - |
| - history_[i][history_cursor_] = data[i]; |
| - |
| - mean = history_[i][history_cursor_]; |
| - variance_[i] = 0.0f; |
| - for (size_t j = 1; j < num; ++j) { |
| - complex<float> sample = |
| - zerofudge(history_[i][(history_cursor_ + j) % window_size_]); |
| - sample = history_[i][(history_cursor_ + j) % window_size_]; |
| - float old_sum = conj_sum; |
| - complex<float> old_mean = mean; |
| - |
| - mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); |
| - conj_sum = |
| - (old_sum + std::conj(sample - old_mean) * (sample - mean)).real(); |
| - variance_[i] = conj_sum / (j); |
| - } |
| - array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| - } |
| - history_cursor_ = (history_cursor_ + 1) % window_size_; |
| - ++count_; |
| -} |
| - |
| -// Variance with a window of blocks. Within each block, the variances are |
| -// recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
| -// Once a block is filled with kWindowBlockSize samples, it is added to the |
| -// history window and a new block is started. The variances for the window |
| -// are recomputed from scratch at each of these transitions. |
| -void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
| - size_t blocks = min(window_size_, history_cursor_ + 1); |
| - for (size_t i = 0; i < num_freqs_; ++i) { |
| - AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
| - AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
| - &sub_running_mean_sq_[i]); |
| - subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
| - subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
| - |
| - variance_[i] = |
| - (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - |
| - NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
| - std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) |
| - .real(); |
| - if (count_ == kWindowBlockSize - 1) { |
| - sub_running_mean_[i] = complex<float>(0.0f, 0.0f); |
| - sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
| - running_mean_[i] = complex<float>(0.0f, 0.0f); |
| - running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
| - for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) { |
| - AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]); |
| - AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]); |
| - } |
| - ++history_cursor_; |
| - } |
| - } |
| - ++count_; |
| - if (count_ == kWindowBlockSize) { |
| - count_ = 0; |
| - } |
| -} |
| - |
| -// Recomputes variances for each window from scratch based on previous window. |
| -void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data, |
| - bool /*dummy*/) { |
| - // TODO(ekmeyerson) To mitigate potential divergence, add counter so that |
| - // after every so often sums are computed scratch by summing over all |
| - // elements instead of subtracting oldest and adding newest. |
| - for (size_t i = 0; i < num_freqs_; ++i) { |
| - sub_running_mean_[i] += data[i]; |
| - sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); |
| - } |
| - ++count_; |
| - |
| - // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow |
| - // experimentation with different block size,window size pairs. |
| - if (count_ >= kWindowBlockSize) { |
| - count_ = 0; |
| - |
| - for (size_t i = 0; i < num_freqs_; ++i) { |
| - running_mean_[i] -= subhistory_[i][history_cursor_]; |
| - running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; |
| - |
| - float scale = 1.f / kWindowBlockSize; |
| - subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; |
| - subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; |
| - |
| - sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); |
| - sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); |
| - |
| - running_mean_[i] += subhistory_[i][history_cursor_]; |
| - running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; |
| - |
| - scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); |
| - variance_[i] = std::real(running_mean_sq_[i] * scale - |
| - running_mean_[i] * scale * |
| - std::conj(running_mean_[i]) * scale); |
| - } |
| - |
| - ++history_cursor_; |
| - if (history_cursor_ >= window_size_) { |
| - buffer_full_ = true; |
| - history_cursor_ = 0; |
| - } |
| - } |
| -} |
| - |
| -void VarianceArray::Clear() { |
| - memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * num_freqs_); |
| - memset(running_mean_sq_.get(), 0, |
| - sizeof(*running_mean_sq_.get()) * num_freqs_); |
| - memset(variance_.get(), 0, sizeof(*variance_.get()) * num_freqs_); |
| - memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * num_freqs_); |
| - history_cursor_ = 0; |
| - count_ = 0; |
| - array_mean_ = 0.0f; |
| -} |
| - |
| -void VarianceArray::ApplyScale(float scale) { |
| - array_mean_ = 0.0f; |
| - for (size_t i = 0; i < num_freqs_; ++i) { |
| - variance_[i] *= scale * scale; |
| - array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| + power_[i] = magnitude_[i] * magnitude_[i]; |
| } |
| + return &power_[0]; |
| } |
| GainApplier::GainApplier(size_t freqs, float change_limit) |
| @@ -292,23 +61,21 @@ GainApplier::GainApplier(size_t freqs, float change_limit) |
| target_(new float[freqs]()), |
| current_(new float[freqs]()) { |
| for (size_t i = 0; i < freqs; ++i) { |
| - target_[i] = 1.0f; |
| - current_[i] = 1.0f; |
| + target_[i] = 1.f; |
| + current_[i] = 1.f; |
| } |
| } |
| -void GainApplier::Apply(const complex<float>* in_block, |
| - complex<float>* out_block) { |
| +void GainApplier::Apply(const std::complex<float>* in_block, |
| + std::complex<float>* out_block) { |
| for (size_t i = 0; i < num_freqs_; ++i) { |
| float factor = sqrtf(fabsf(current_[i])); |
| if (!std::isnormal(factor)) { |
| - factor = 1.0f; |
| + factor = 1.f; |
| } |
| out_block[i] = factor * in_block[i]; |
| current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
| } |
| } |
| -} // namespace intelligibility |
| - |
| } // namespace webrtc |