Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c |
diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..3f8c5dcc0e164c478ba7852765a7841777b1a646 |
--- /dev/null |
+++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c |
@@ -0,0 +1,208 @@ |
+/* Copyright (c) 2002-2008 Jean-Marc Valin |
+ Copyright (c) 2007-2008 CSIRO |
+ Copyright (c) 2007-2009 Xiph.Org Foundation |
+ Written by Jean-Marc Valin */ |
+/** |
+ @file mathops.h |
+ @brief Various math functions |
+*/ |
+/* |
+ Redistribution and use in source and binary forms, with or without |
+ modification, are permitted provided that the following conditions |
+ are met: |
+ |
+ - Redistributions of source code must retain the above copyright |
+ notice, this list of conditions and the following disclaimer. |
+ |
+ - Redistributions in binary form must reproduce the above copyright |
+ notice, this list of conditions and the following disclaimer in the |
+ documentation and/or other materials provided with the distribution. |
+ |
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+*/ |
+ |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+ |
+#include "mathops.h" |
+ |
+/*Compute floor(sqrt(_val)) with exact arithmetic. |
+ This has been tested on all possible 32-bit inputs.*/ |
+unsigned isqrt32(opus_uint32 _val){ |
+ unsigned b; |
+ unsigned g; |
+ int bshift; |
+ /*Uses the second method from |
+ http://www.azillionmonkeys.com/qed/sqroot.html |
+ The main idea is to search for the largest binary digit b such that |
+ (g+b)*(g+b) <= _val, and add it to the solution g.*/ |
+ g=0; |
+ bshift=(EC_ILOG(_val)-1)>>1; |
+ b=1U<<bshift; |
+ do{ |
+ opus_uint32 t; |
+ t=(((opus_uint32)g<<1)+b)<<bshift; |
+ if(t<=_val){ |
+ g+=b; |
+ _val-=t; |
+ } |
+ b>>=1; |
+ bshift--; |
+ } |
+ while(bshift>=0); |
+ return g; |
+} |
+ |
+#ifdef FIXED_POINT |
+ |
+opus_val32 frac_div32(opus_val32 a, opus_val32 b) |
+{ |
+ opus_val16 rcp; |
+ opus_val32 result, rem; |
+ int shift = celt_ilog2(b)-29; |
+ a = VSHR32(a,shift); |
+ b = VSHR32(b,shift); |
+ /* 16-bit reciprocal */ |
+ rcp = ROUND16(celt_rcp(ROUND16(b,16)),3); |
+ result = MULT16_32_Q15(rcp, a); |
+ rem = PSHR32(a,2)-MULT32_32_Q31(result, b); |
+ result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2)); |
+ if (result >= 536870912) /* 2^29 */ |
+ return 2147483647; /* 2^31 - 1 */ |
+ else if (result <= -536870912) /* -2^29 */ |
+ return -2147483647; /* -2^31 */ |
+ else |
+ return SHL32(result, 2); |
+} |
+ |
+/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */ |
+opus_val16 celt_rsqrt_norm(opus_val32 x) |
+{ |
+ opus_val16 n; |
+ opus_val16 r; |
+ opus_val16 r2; |
+ opus_val16 y; |
+ /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */ |
+ n = x-32768; |
+ /* Get a rough initial guess for the root. |
+ The optimal minimax quadratic approximation (using relative error) is |
+ r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485). |
+ Coefficients here, and the final result r, are Q14.*/ |
+ r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713)))); |
+ /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14. |
+ We can compute the result from n and r using Q15 multiplies with some |
+ adjustment, carefully done to avoid overflow. |
+ Range of y is [-1564,1594]. */ |
+ r2 = MULT16_16_Q15(r, r); |
+ y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1); |
+ /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5). |
+ This yields the Q14 reciprocal square root of the Q16 x, with a maximum |
+ relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a |
+ peak absolute error of 2.26591/16384. */ |
+ return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y, |
+ SUB16(MULT16_16_Q15(y, 12288), 16384)))); |
+} |
+ |
+/** Sqrt approximation (QX input, QX/2 output) */ |
+opus_val32 celt_sqrt(opus_val32 x) |
+{ |
+ int k; |
+ opus_val16 n; |
+ opus_val32 rt; |
+ static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664}; |
+ if (x==0) |
+ return 0; |
+ else if (x>=1073741824) |
+ return 32767; |
+ k = (celt_ilog2(x)>>1)-7; |
+ x = VSHR32(x, 2*k); |
+ n = x-32768; |
+ rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], |
+ MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4]))))))))); |
+ rt = VSHR32(rt,7-k); |
+ return rt; |
+} |
+ |
+#define L1 32767 |
+#define L2 -7651 |
+#define L3 8277 |
+#define L4 -626 |
+ |
+static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x) |
+{ |
+ opus_val16 x2; |
+ |
+ x2 = MULT16_16_P15(x,x); |
+ return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2 |
+ )))))))); |
+} |
+ |
+#undef L1 |
+#undef L2 |
+#undef L3 |
+#undef L4 |
+ |
+opus_val16 celt_cos_norm(opus_val32 x) |
+{ |
+ x = x&0x0001ffff; |
+ if (x>SHL32(EXTEND32(1), 16)) |
+ x = SUB32(SHL32(EXTEND32(1), 17),x); |
+ if (x&0x00007fff) |
+ { |
+ if (x<SHL32(EXTEND32(1), 15)) |
+ { |
+ return _celt_cos_pi_2(EXTRACT16(x)); |
+ } else { |
+ return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x))); |
+ } |
+ } else { |
+ if (x&0x0000ffff) |
+ return 0; |
+ else if (x&0x0001ffff) |
+ return -32767; |
+ else |
+ return 32767; |
+ } |
+} |
+ |
+/** Reciprocal approximation (Q15 input, Q16 output) */ |
+opus_val32 celt_rcp(opus_val32 x) |
+{ |
+ int i; |
+ opus_val16 n; |
+ opus_val16 r; |
+ celt_assert2(x>0, "celt_rcp() only defined for positive values"); |
+ i = celt_ilog2(x); |
+ /* n is Q15 with range [0,1). */ |
+ n = VSHR32(x,i-15)-32768; |
+ /* Start with a linear approximation: |
+ r = 1.8823529411764706-0.9411764705882353*n. |
+ The coefficients and the result are Q14 in the range [15420,30840].*/ |
+ r = ADD16(30840, MULT16_16_Q15(-15420, n)); |
+ /* Perform two Newton iterations: |
+ r -= r*((r*n)-1.Q15) |
+ = r*((r*n)+(r-1.Q15)). */ |
+ r = SUB16(r, MULT16_16_Q15(r, |
+ ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))); |
+ /* We subtract an extra 1 in the second iteration to avoid overflow; it also |
+ neatly compensates for truncation error in the rest of the process. */ |
+ r = SUB16(r, ADD16(1, MULT16_16_Q15(r, |
+ ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))))); |
+ /* r is now the Q15 solution to 2/(n+1), with a maximum relative error |
+ of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute |
+ error of 1.24665/32768. */ |
+ return VSHR32(EXTEND32(r),i-16); |
+} |
+ |
+#endif |