| Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c
|
| diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..3f8c5dcc0e164c478ba7852765a7841777b1a646
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c
|
| @@ -0,0 +1,208 @@
|
| +/* Copyright (c) 2002-2008 Jean-Marc Valin
|
| + Copyright (c) 2007-2008 CSIRO
|
| + Copyright (c) 2007-2009 Xiph.Org Foundation
|
| + Written by Jean-Marc Valin */
|
| +/**
|
| + @file mathops.h
|
| + @brief Various math functions
|
| +*/
|
| +/*
|
| + Redistribution and use in source and binary forms, with or without
|
| + modification, are permitted provided that the following conditions
|
| + are met:
|
| +
|
| + - Redistributions of source code must retain the above copyright
|
| + notice, this list of conditions and the following disclaimer.
|
| +
|
| + - Redistributions in binary form must reproduce the above copyright
|
| + notice, this list of conditions and the following disclaimer in the
|
| + documentation and/or other materials provided with the distribution.
|
| +
|
| + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
| + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
| + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
| + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
| + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +*/
|
| +
|
| +#ifdef HAVE_CONFIG_H
|
| +#include "config.h"
|
| +#endif
|
| +
|
| +#include "mathops.h"
|
| +
|
| +/*Compute floor(sqrt(_val)) with exact arithmetic.
|
| + This has been tested on all possible 32-bit inputs.*/
|
| +unsigned isqrt32(opus_uint32 _val){
|
| + unsigned b;
|
| + unsigned g;
|
| + int bshift;
|
| + /*Uses the second method from
|
| + http://www.azillionmonkeys.com/qed/sqroot.html
|
| + The main idea is to search for the largest binary digit b such that
|
| + (g+b)*(g+b) <= _val, and add it to the solution g.*/
|
| + g=0;
|
| + bshift=(EC_ILOG(_val)-1)>>1;
|
| + b=1U<<bshift;
|
| + do{
|
| + opus_uint32 t;
|
| + t=(((opus_uint32)g<<1)+b)<<bshift;
|
| + if(t<=_val){
|
| + g+=b;
|
| + _val-=t;
|
| + }
|
| + b>>=1;
|
| + bshift--;
|
| + }
|
| + while(bshift>=0);
|
| + return g;
|
| +}
|
| +
|
| +#ifdef FIXED_POINT
|
| +
|
| +opus_val32 frac_div32(opus_val32 a, opus_val32 b)
|
| +{
|
| + opus_val16 rcp;
|
| + opus_val32 result, rem;
|
| + int shift = celt_ilog2(b)-29;
|
| + a = VSHR32(a,shift);
|
| + b = VSHR32(b,shift);
|
| + /* 16-bit reciprocal */
|
| + rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
|
| + result = MULT16_32_Q15(rcp, a);
|
| + rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
|
| + result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
|
| + if (result >= 536870912) /* 2^29 */
|
| + return 2147483647; /* 2^31 - 1 */
|
| + else if (result <= -536870912) /* -2^29 */
|
| + return -2147483647; /* -2^31 */
|
| + else
|
| + return SHL32(result, 2);
|
| +}
|
| +
|
| +/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
|
| +opus_val16 celt_rsqrt_norm(opus_val32 x)
|
| +{
|
| + opus_val16 n;
|
| + opus_val16 r;
|
| + opus_val16 r2;
|
| + opus_val16 y;
|
| + /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
|
| + n = x-32768;
|
| + /* Get a rough initial guess for the root.
|
| + The optimal minimax quadratic approximation (using relative error) is
|
| + r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
|
| + Coefficients here, and the final result r, are Q14.*/
|
| + r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
|
| + /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
|
| + We can compute the result from n and r using Q15 multiplies with some
|
| + adjustment, carefully done to avoid overflow.
|
| + Range of y is [-1564,1594]. */
|
| + r2 = MULT16_16_Q15(r, r);
|
| + y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
|
| + /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
|
| + This yields the Q14 reciprocal square root of the Q16 x, with a maximum
|
| + relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
|
| + peak absolute error of 2.26591/16384. */
|
| + return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
|
| + SUB16(MULT16_16_Q15(y, 12288), 16384))));
|
| +}
|
| +
|
| +/** Sqrt approximation (QX input, QX/2 output) */
|
| +opus_val32 celt_sqrt(opus_val32 x)
|
| +{
|
| + int k;
|
| + opus_val16 n;
|
| + opus_val32 rt;
|
| + static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
|
| + if (x==0)
|
| + return 0;
|
| + else if (x>=1073741824)
|
| + return 32767;
|
| + k = (celt_ilog2(x)>>1)-7;
|
| + x = VSHR32(x, 2*k);
|
| + n = x-32768;
|
| + rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
| + MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
| + rt = VSHR32(rt,7-k);
|
| + return rt;
|
| +}
|
| +
|
| +#define L1 32767
|
| +#define L2 -7651
|
| +#define L3 8277
|
| +#define L4 -626
|
| +
|
| +static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
|
| +{
|
| + opus_val16 x2;
|
| +
|
| + x2 = MULT16_16_P15(x,x);
|
| + return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
|
| + ))))))));
|
| +}
|
| +
|
| +#undef L1
|
| +#undef L2
|
| +#undef L3
|
| +#undef L4
|
| +
|
| +opus_val16 celt_cos_norm(opus_val32 x)
|
| +{
|
| + x = x&0x0001ffff;
|
| + if (x>SHL32(EXTEND32(1), 16))
|
| + x = SUB32(SHL32(EXTEND32(1), 17),x);
|
| + if (x&0x00007fff)
|
| + {
|
| + if (x<SHL32(EXTEND32(1), 15))
|
| + {
|
| + return _celt_cos_pi_2(EXTRACT16(x));
|
| + } else {
|
| + return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
|
| + }
|
| + } else {
|
| + if (x&0x0000ffff)
|
| + return 0;
|
| + else if (x&0x0001ffff)
|
| + return -32767;
|
| + else
|
| + return 32767;
|
| + }
|
| +}
|
| +
|
| +/** Reciprocal approximation (Q15 input, Q16 output) */
|
| +opus_val32 celt_rcp(opus_val32 x)
|
| +{
|
| + int i;
|
| + opus_val16 n;
|
| + opus_val16 r;
|
| + celt_assert2(x>0, "celt_rcp() only defined for positive values");
|
| + i = celt_ilog2(x);
|
| + /* n is Q15 with range [0,1). */
|
| + n = VSHR32(x,i-15)-32768;
|
| + /* Start with a linear approximation:
|
| + r = 1.8823529411764706-0.9411764705882353*n.
|
| + The coefficients and the result are Q14 in the range [15420,30840].*/
|
| + r = ADD16(30840, MULT16_16_Q15(-15420, n));
|
| + /* Perform two Newton iterations:
|
| + r -= r*((r*n)-1.Q15)
|
| + = r*((r*n)+(r-1.Q15)). */
|
| + r = SUB16(r, MULT16_16_Q15(r,
|
| + ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
|
| + /* We subtract an extra 1 in the second iteration to avoid overflow; it also
|
| + neatly compensates for truncation error in the rest of the process. */
|
| + r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
|
| + ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
|
| + /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
|
| + of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
|
| + error of 1.24665/32768. */
|
| + return VSHR32(EXTEND32(r),i-16);
|
| +}
|
| +
|
| +#endif
|
|
|