| Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c | 
| diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..3f8c5dcc0e164c478ba7852765a7841777b1a646 | 
| --- /dev/null | 
| +++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.c | 
| @@ -0,0 +1,208 @@ | 
| +/* Copyright (c) 2002-2008 Jean-Marc Valin | 
| +   Copyright (c) 2007-2008 CSIRO | 
| +   Copyright (c) 2007-2009 Xiph.Org Foundation | 
| +   Written by Jean-Marc Valin */ | 
| +/** | 
| +   @file mathops.h | 
| +   @brief Various math functions | 
| +*/ | 
| +/* | 
| +   Redistribution and use in source and binary forms, with or without | 
| +   modification, are permitted provided that the following conditions | 
| +   are met: | 
| + | 
| +   - Redistributions of source code must retain the above copyright | 
| +   notice, this list of conditions and the following disclaimer. | 
| + | 
| +   - Redistributions in binary form must reproduce the above copyright | 
| +   notice, this list of conditions and the following disclaimer in the | 
| +   documentation and/or other materials provided with the distribution. | 
| + | 
| +   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
| +   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
| +   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
| +   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | 
| +   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| +   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| +   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| +   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
| +   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
| +   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
| +   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| +*/ | 
| + | 
| +#ifdef HAVE_CONFIG_H | 
| +#include "config.h" | 
| +#endif | 
| + | 
| +#include "mathops.h" | 
| + | 
| +/*Compute floor(sqrt(_val)) with exact arithmetic. | 
| +  This has been tested on all possible 32-bit inputs.*/ | 
| +unsigned isqrt32(opus_uint32 _val){ | 
| +  unsigned b; | 
| +  unsigned g; | 
| +  int      bshift; | 
| +  /*Uses the second method from | 
| +     http://www.azillionmonkeys.com/qed/sqroot.html | 
| +    The main idea is to search for the largest binary digit b such that | 
| +     (g+b)*(g+b) <= _val, and add it to the solution g.*/ | 
| +  g=0; | 
| +  bshift=(EC_ILOG(_val)-1)>>1; | 
| +  b=1U<<bshift; | 
| +  do{ | 
| +    opus_uint32 t; | 
| +    t=(((opus_uint32)g<<1)+b)<<bshift; | 
| +    if(t<=_val){ | 
| +      g+=b; | 
| +      _val-=t; | 
| +    } | 
| +    b>>=1; | 
| +    bshift--; | 
| +  } | 
| +  while(bshift>=0); | 
| +  return g; | 
| +} | 
| + | 
| +#ifdef FIXED_POINT | 
| + | 
| +opus_val32 frac_div32(opus_val32 a, opus_val32 b) | 
| +{ | 
| +   opus_val16 rcp; | 
| +   opus_val32 result, rem; | 
| +   int shift = celt_ilog2(b)-29; | 
| +   a = VSHR32(a,shift); | 
| +   b = VSHR32(b,shift); | 
| +   /* 16-bit reciprocal */ | 
| +   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3); | 
| +   result = MULT16_32_Q15(rcp, a); | 
| +   rem = PSHR32(a,2)-MULT32_32_Q31(result, b); | 
| +   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2)); | 
| +   if (result >= 536870912)       /*  2^29 */ | 
| +      return 2147483647;          /*  2^31 - 1 */ | 
| +   else if (result <= -536870912) /* -2^29 */ | 
| +      return -2147483647;         /* -2^31 */ | 
| +   else | 
| +      return SHL32(result, 2); | 
| +} | 
| + | 
| +/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */ | 
| +opus_val16 celt_rsqrt_norm(opus_val32 x) | 
| +{ | 
| +   opus_val16 n; | 
| +   opus_val16 r; | 
| +   opus_val16 r2; | 
| +   opus_val16 y; | 
| +   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */ | 
| +   n = x-32768; | 
| +   /* Get a rough initial guess for the root. | 
| +      The optimal minimax quadratic approximation (using relative error) is | 
| +       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485). | 
| +      Coefficients here, and the final result r, are Q14.*/ | 
| +   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713)))); | 
| +   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14. | 
| +      We can compute the result from n and r using Q15 multiplies with some | 
| +       adjustment, carefully done to avoid overflow. | 
| +      Range of y is [-1564,1594]. */ | 
| +   r2 = MULT16_16_Q15(r, r); | 
| +   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1); | 
| +   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5). | 
| +      This yields the Q14 reciprocal square root of the Q16 x, with a maximum | 
| +       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a | 
| +       peak absolute error of 2.26591/16384. */ | 
| +   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y, | 
| +              SUB16(MULT16_16_Q15(y, 12288), 16384)))); | 
| +} | 
| + | 
| +/** Sqrt approximation (QX input, QX/2 output) */ | 
| +opus_val32 celt_sqrt(opus_val32 x) | 
| +{ | 
| +   int k; | 
| +   opus_val16 n; | 
| +   opus_val32 rt; | 
| +   static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664}; | 
| +   if (x==0) | 
| +      return 0; | 
| +   else if (x>=1073741824) | 
| +      return 32767; | 
| +   k = (celt_ilog2(x)>>1)-7; | 
| +   x = VSHR32(x, 2*k); | 
| +   n = x-32768; | 
| +   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], | 
| +              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4]))))))))); | 
| +   rt = VSHR32(rt,7-k); | 
| +   return rt; | 
| +} | 
| + | 
| +#define L1 32767 | 
| +#define L2 -7651 | 
| +#define L3 8277 | 
| +#define L4 -626 | 
| + | 
| +static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x) | 
| +{ | 
| +   opus_val16 x2; | 
| + | 
| +   x2 = MULT16_16_P15(x,x); | 
| +   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2 | 
| +                                                                                )))))))); | 
| +} | 
| + | 
| +#undef L1 | 
| +#undef L2 | 
| +#undef L3 | 
| +#undef L4 | 
| + | 
| +opus_val16 celt_cos_norm(opus_val32 x) | 
| +{ | 
| +   x = x&0x0001ffff; | 
| +   if (x>SHL32(EXTEND32(1), 16)) | 
| +      x = SUB32(SHL32(EXTEND32(1), 17),x); | 
| +   if (x&0x00007fff) | 
| +   { | 
| +      if (x<SHL32(EXTEND32(1), 15)) | 
| +      { | 
| +         return _celt_cos_pi_2(EXTRACT16(x)); | 
| +      } else { | 
| +         return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x))); | 
| +      } | 
| +   } else { | 
| +      if (x&0x0000ffff) | 
| +         return 0; | 
| +      else if (x&0x0001ffff) | 
| +         return -32767; | 
| +      else | 
| +         return 32767; | 
| +   } | 
| +} | 
| + | 
| +/** Reciprocal approximation (Q15 input, Q16 output) */ | 
| +opus_val32 celt_rcp(opus_val32 x) | 
| +{ | 
| +   int i; | 
| +   opus_val16 n; | 
| +   opus_val16 r; | 
| +   celt_assert2(x>0, "celt_rcp() only defined for positive values"); | 
| +   i = celt_ilog2(x); | 
| +   /* n is Q15 with range [0,1). */ | 
| +   n = VSHR32(x,i-15)-32768; | 
| +   /* Start with a linear approximation: | 
| +      r = 1.8823529411764706-0.9411764705882353*n. | 
| +      The coefficients and the result are Q14 in the range [15420,30840].*/ | 
| +   r = ADD16(30840, MULT16_16_Q15(-15420, n)); | 
| +   /* Perform two Newton iterations: | 
| +      r -= r*((r*n)-1.Q15) | 
| +         = r*((r*n)+(r-1.Q15)). */ | 
| +   r = SUB16(r, MULT16_16_Q15(r, | 
| +             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))); | 
| +   /* We subtract an extra 1 in the second iteration to avoid overflow; it also | 
| +       neatly compensates for truncation error in the rest of the process. */ | 
| +   r = SUB16(r, ADD16(1, MULT16_16_Q15(r, | 
| +             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))))); | 
| +   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error | 
| +       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute | 
| +       error of 1.24665/32768. */ | 
| +   return VSHR32(EXTEND32(r),i-16); | 
| +} | 
| + | 
| +#endif | 
|  |