Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.h |
diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.h b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..a0525a961030ae5df1674ff59612f2054453a921 |
--- /dev/null |
+++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.h |
@@ -0,0 +1,258 @@ |
+/* Copyright (c) 2002-2008 Jean-Marc Valin |
+ Copyright (c) 2007-2008 CSIRO |
+ Copyright (c) 2007-2009 Xiph.Org Foundation |
+ Written by Jean-Marc Valin */ |
+/** |
+ @file mathops.h |
+ @brief Various math functions |
+*/ |
+/* |
+ Redistribution and use in source and binary forms, with or without |
+ modification, are permitted provided that the following conditions |
+ are met: |
+ |
+ - Redistributions of source code must retain the above copyright |
+ notice, this list of conditions and the following disclaimer. |
+ |
+ - Redistributions in binary form must reproduce the above copyright |
+ notice, this list of conditions and the following disclaimer in the |
+ documentation and/or other materials provided with the distribution. |
+ |
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+*/ |
+ |
+#ifndef MATHOPS_H |
+#define MATHOPS_H |
+ |
+#include "arch.h" |
+#include "entcode.h" |
+#include "os_support.h" |
+ |
+/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ |
+#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) |
+ |
+unsigned isqrt32(opus_uint32 _val); |
+ |
+#ifndef OVERRIDE_CELT_MAXABS16 |
+static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) |
+{ |
+ int i; |
+ opus_val16 maxval = 0; |
+ opus_val16 minval = 0; |
+ for (i=0;i<len;i++) |
+ { |
+ maxval = MAX16(maxval, x[i]); |
+ minval = MIN16(minval, x[i]); |
+ } |
+ return MAX32(EXTEND32(maxval),-EXTEND32(minval)); |
+} |
+#endif |
+ |
+#ifndef OVERRIDE_CELT_MAXABS32 |
+#ifdef FIXED_POINT |
+static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) |
+{ |
+ int i; |
+ opus_val32 maxval = 0; |
+ opus_val32 minval = 0; |
+ for (i=0;i<len;i++) |
+ { |
+ maxval = MAX32(maxval, x[i]); |
+ minval = MIN32(minval, x[i]); |
+ } |
+ return MAX32(maxval, -minval); |
+} |
+#else |
+#define celt_maxabs32(x,len) celt_maxabs16(x,len) |
+#endif |
+#endif |
+ |
+ |
+#ifndef FIXED_POINT |
+ |
+#define PI 3.141592653f |
+#define celt_sqrt(x) ((float)sqrt(x)) |
+#define celt_rsqrt(x) (1.f/celt_sqrt(x)) |
+#define celt_rsqrt_norm(x) (celt_rsqrt(x)) |
+#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) |
+#define celt_rcp(x) (1.f/(x)) |
+#define celt_div(a,b) ((a)/(b)) |
+#define frac_div32(a,b) ((float)(a)/(b)) |
+ |
+#ifdef FLOAT_APPROX |
+ |
+/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127 |
+ denorm, +/- inf and NaN are *not* handled */ |
+ |
+/** Base-2 log approximation (log2(x)). */ |
+static OPUS_INLINE float celt_log2(float x) |
+{ |
+ int integer; |
+ float frac; |
+ union { |
+ float f; |
+ opus_uint32 i; |
+ } in; |
+ in.f = x; |
+ integer = (in.i>>23)-127; |
+ in.i -= integer<<23; |
+ frac = in.f - 1.5f; |
+ frac = -0.41445418f + frac*(0.95909232f |
+ + frac*(-0.33951290f + frac*0.16541097f)); |
+ return 1+integer+frac; |
+} |
+ |
+/** Base-2 exponential approximation (2^x). */ |
+static OPUS_INLINE float celt_exp2(float x) |
+{ |
+ int integer; |
+ float frac; |
+ union { |
+ float f; |
+ opus_uint32 i; |
+ } res; |
+ integer = floor(x); |
+ if (integer < -50) |
+ return 0; |
+ frac = x-integer; |
+ /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ |
+ res.f = 0.99992522f + frac * (0.69583354f |
+ + frac * (0.22606716f + 0.078024523f*frac)); |
+ res.i = (res.i + (integer<<23)) & 0x7fffffff; |
+ return res.f; |
+} |
+ |
+#else |
+#define celt_log2(x) ((float)(1.442695040888963387*log(x))) |
+#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) |
+#endif |
+ |
+#endif |
+ |
+#ifdef FIXED_POINT |
+ |
+#include "os_support.h" |
+ |
+#ifndef OVERRIDE_CELT_ILOG2 |
+/** Integer log in base2. Undefined for zero and negative numbers */ |
+static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) |
+{ |
+ celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); |
+ return EC_ILOG(x)-1; |
+} |
+#endif |
+ |
+ |
+/** Integer log in base2. Defined for zero, but not for negative numbers */ |
+static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) |
+{ |
+ return x <= 0 ? 0 : celt_ilog2(x); |
+} |
+ |
+opus_val16 celt_rsqrt_norm(opus_val32 x); |
+ |
+opus_val32 celt_sqrt(opus_val32 x); |
+ |
+opus_val16 celt_cos_norm(opus_val32 x); |
+ |
+/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ |
+static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) |
+{ |
+ int i; |
+ opus_val16 n, frac; |
+ /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, |
+ 0.15530808010959576, -0.08556153059057618 */ |
+ static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; |
+ if (x==0) |
+ return -32767; |
+ i = celt_ilog2(x); |
+ n = VSHR32(x,i-15)-32768-16384; |
+ frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); |
+ return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); |
+} |
+ |
+/* |
+ K0 = 1 |
+ K1 = log(2) |
+ K2 = 3-4*log(2) |
+ K3 = 3*log(2) - 2 |
+*/ |
+#define D0 16383 |
+#define D1 22804 |
+#define D2 14819 |
+#define D3 10204 |
+ |
+static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) |
+{ |
+ opus_val16 frac; |
+ frac = SHL16(x, 4); |
+ return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); |
+} |
+/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ |
+static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) |
+{ |
+ int integer; |
+ opus_val16 frac; |
+ integer = SHR16(x,10); |
+ if (integer>14) |
+ return 0x7f000000; |
+ else if (integer < -15) |
+ return 0; |
+ frac = celt_exp2_frac(x-SHL16(integer,10)); |
+ return VSHR32(EXTEND32(frac), -integer-2); |
+} |
+ |
+opus_val32 celt_rcp(opus_val32 x); |
+ |
+#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) |
+ |
+opus_val32 frac_div32(opus_val32 a, opus_val32 b); |
+ |
+#define M1 32767 |
+#define M2 -21 |
+#define M3 -11943 |
+#define M4 4936 |
+ |
+/* Atan approximation using a 4th order polynomial. Input is in Q15 format |
+ and normalized by pi/4. Output is in Q15 format */ |
+static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) |
+{ |
+ return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); |
+} |
+ |
+#undef M1 |
+#undef M2 |
+#undef M3 |
+#undef M4 |
+ |
+/* atan2() approximation valid for positive input values */ |
+static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) |
+{ |
+ if (y < x) |
+ { |
+ opus_val32 arg; |
+ arg = celt_div(SHL32(EXTEND32(y),15),x); |
+ if (arg >= 32767) |
+ arg = 32767; |
+ return SHR16(celt_atan01(EXTRACT16(arg)),1); |
+ } else { |
+ opus_val32 arg; |
+ arg = celt_div(SHL32(EXTEND32(x),15),y); |
+ if (arg >= 32767) |
+ arg = 32767; |
+ return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); |
+ } |
+} |
+ |
+#endif /* FIXED_POINT */ |
+#endif /* MATHOPS_H */ |