| Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.h
|
| diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.h b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..a0525a961030ae5df1674ff59612f2054453a921
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mathops.h
|
| @@ -0,0 +1,258 @@
|
| +/* Copyright (c) 2002-2008 Jean-Marc Valin
|
| + Copyright (c) 2007-2008 CSIRO
|
| + Copyright (c) 2007-2009 Xiph.Org Foundation
|
| + Written by Jean-Marc Valin */
|
| +/**
|
| + @file mathops.h
|
| + @brief Various math functions
|
| +*/
|
| +/*
|
| + Redistribution and use in source and binary forms, with or without
|
| + modification, are permitted provided that the following conditions
|
| + are met:
|
| +
|
| + - Redistributions of source code must retain the above copyright
|
| + notice, this list of conditions and the following disclaimer.
|
| +
|
| + - Redistributions in binary form must reproduce the above copyright
|
| + notice, this list of conditions and the following disclaimer in the
|
| + documentation and/or other materials provided with the distribution.
|
| +
|
| + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
| + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
| + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
| + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
| + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +*/
|
| +
|
| +#ifndef MATHOPS_H
|
| +#define MATHOPS_H
|
| +
|
| +#include "arch.h"
|
| +#include "entcode.h"
|
| +#include "os_support.h"
|
| +
|
| +/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
|
| +#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
|
| +
|
| +unsigned isqrt32(opus_uint32 _val);
|
| +
|
| +#ifndef OVERRIDE_CELT_MAXABS16
|
| +static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
|
| +{
|
| + int i;
|
| + opus_val16 maxval = 0;
|
| + opus_val16 minval = 0;
|
| + for (i=0;i<len;i++)
|
| + {
|
| + maxval = MAX16(maxval, x[i]);
|
| + minval = MIN16(minval, x[i]);
|
| + }
|
| + return MAX32(EXTEND32(maxval),-EXTEND32(minval));
|
| +}
|
| +#endif
|
| +
|
| +#ifndef OVERRIDE_CELT_MAXABS32
|
| +#ifdef FIXED_POINT
|
| +static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
|
| +{
|
| + int i;
|
| + opus_val32 maxval = 0;
|
| + opus_val32 minval = 0;
|
| + for (i=0;i<len;i++)
|
| + {
|
| + maxval = MAX32(maxval, x[i]);
|
| + minval = MIN32(minval, x[i]);
|
| + }
|
| + return MAX32(maxval, -minval);
|
| +}
|
| +#else
|
| +#define celt_maxabs32(x,len) celt_maxabs16(x,len)
|
| +#endif
|
| +#endif
|
| +
|
| +
|
| +#ifndef FIXED_POINT
|
| +
|
| +#define PI 3.141592653f
|
| +#define celt_sqrt(x) ((float)sqrt(x))
|
| +#define celt_rsqrt(x) (1.f/celt_sqrt(x))
|
| +#define celt_rsqrt_norm(x) (celt_rsqrt(x))
|
| +#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
|
| +#define celt_rcp(x) (1.f/(x))
|
| +#define celt_div(a,b) ((a)/(b))
|
| +#define frac_div32(a,b) ((float)(a)/(b))
|
| +
|
| +#ifdef FLOAT_APPROX
|
| +
|
| +/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
|
| + denorm, +/- inf and NaN are *not* handled */
|
| +
|
| +/** Base-2 log approximation (log2(x)). */
|
| +static OPUS_INLINE float celt_log2(float x)
|
| +{
|
| + int integer;
|
| + float frac;
|
| + union {
|
| + float f;
|
| + opus_uint32 i;
|
| + } in;
|
| + in.f = x;
|
| + integer = (in.i>>23)-127;
|
| + in.i -= integer<<23;
|
| + frac = in.f - 1.5f;
|
| + frac = -0.41445418f + frac*(0.95909232f
|
| + + frac*(-0.33951290f + frac*0.16541097f));
|
| + return 1+integer+frac;
|
| +}
|
| +
|
| +/** Base-2 exponential approximation (2^x). */
|
| +static OPUS_INLINE float celt_exp2(float x)
|
| +{
|
| + int integer;
|
| + float frac;
|
| + union {
|
| + float f;
|
| + opus_uint32 i;
|
| + } res;
|
| + integer = floor(x);
|
| + if (integer < -50)
|
| + return 0;
|
| + frac = x-integer;
|
| + /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
|
| + res.f = 0.99992522f + frac * (0.69583354f
|
| + + frac * (0.22606716f + 0.078024523f*frac));
|
| + res.i = (res.i + (integer<<23)) & 0x7fffffff;
|
| + return res.f;
|
| +}
|
| +
|
| +#else
|
| +#define celt_log2(x) ((float)(1.442695040888963387*log(x)))
|
| +#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
|
| +#endif
|
| +
|
| +#endif
|
| +
|
| +#ifdef FIXED_POINT
|
| +
|
| +#include "os_support.h"
|
| +
|
| +#ifndef OVERRIDE_CELT_ILOG2
|
| +/** Integer log in base2. Undefined for zero and negative numbers */
|
| +static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
|
| +{
|
| + celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
|
| + return EC_ILOG(x)-1;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/** Integer log in base2. Defined for zero, but not for negative numbers */
|
| +static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
|
| +{
|
| + return x <= 0 ? 0 : celt_ilog2(x);
|
| +}
|
| +
|
| +opus_val16 celt_rsqrt_norm(opus_val32 x);
|
| +
|
| +opus_val32 celt_sqrt(opus_val32 x);
|
| +
|
| +opus_val16 celt_cos_norm(opus_val32 x);
|
| +
|
| +/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
|
| +static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
|
| +{
|
| + int i;
|
| + opus_val16 n, frac;
|
| + /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
|
| + 0.15530808010959576, -0.08556153059057618 */
|
| + static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
|
| + if (x==0)
|
| + return -32767;
|
| + i = celt_ilog2(x);
|
| + n = VSHR32(x,i-15)-32768-16384;
|
| + frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
|
| + return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
|
| +}
|
| +
|
| +/*
|
| + K0 = 1
|
| + K1 = log(2)
|
| + K2 = 3-4*log(2)
|
| + K3 = 3*log(2) - 2
|
| +*/
|
| +#define D0 16383
|
| +#define D1 22804
|
| +#define D2 14819
|
| +#define D3 10204
|
| +
|
| +static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
|
| +{
|
| + opus_val16 frac;
|
| + frac = SHL16(x, 4);
|
| + return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
|
| +}
|
| +/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
|
| +static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
|
| +{
|
| + int integer;
|
| + opus_val16 frac;
|
| + integer = SHR16(x,10);
|
| + if (integer>14)
|
| + return 0x7f000000;
|
| + else if (integer < -15)
|
| + return 0;
|
| + frac = celt_exp2_frac(x-SHL16(integer,10));
|
| + return VSHR32(EXTEND32(frac), -integer-2);
|
| +}
|
| +
|
| +opus_val32 celt_rcp(opus_val32 x);
|
| +
|
| +#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
|
| +
|
| +opus_val32 frac_div32(opus_val32 a, opus_val32 b);
|
| +
|
| +#define M1 32767
|
| +#define M2 -21
|
| +#define M3 -11943
|
| +#define M4 4936
|
| +
|
| +/* Atan approximation using a 4th order polynomial. Input is in Q15 format
|
| + and normalized by pi/4. Output is in Q15 format */
|
| +static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
|
| +{
|
| + return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
|
| +}
|
| +
|
| +#undef M1
|
| +#undef M2
|
| +#undef M3
|
| +#undef M4
|
| +
|
| +/* atan2() approximation valid for positive input values */
|
| +static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
|
| +{
|
| + if (y < x)
|
| + {
|
| + opus_val32 arg;
|
| + arg = celt_div(SHL32(EXTEND32(y),15),x);
|
| + if (arg >= 32767)
|
| + arg = 32767;
|
| + return SHR16(celt_atan01(EXTRACT16(arg)),1);
|
| + } else {
|
| + opus_val32 arg;
|
| + arg = celt_div(SHL32(EXTEND32(x),15),y);
|
| + if (arg >= 32767)
|
| + arg = 32767;
|
| + return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
|
| + }
|
| +}
|
| +
|
| +#endif /* FIXED_POINT */
|
| +#endif /* MATHOPS_H */
|
|
|