Index: webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mdct.c |
diff --git a/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mdct.c b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mdct.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..5315ad11a37bba9211d49b55def55ee7f152c22c |
--- /dev/null |
+++ b/webrtc/modules/audio_coding/codecs/opus/opus/src/celt/mdct.c |
@@ -0,0 +1,343 @@ |
+/* Copyright (c) 2007-2008 CSIRO |
+ Copyright (c) 2007-2008 Xiph.Org Foundation |
+ Written by Jean-Marc Valin */ |
+/* |
+ Redistribution and use in source and binary forms, with or without |
+ modification, are permitted provided that the following conditions |
+ are met: |
+ |
+ - Redistributions of source code must retain the above copyright |
+ notice, this list of conditions and the following disclaimer. |
+ |
+ - Redistributions in binary form must reproduce the above copyright |
+ notice, this list of conditions and the following disclaimer in the |
+ documentation and/or other materials provided with the distribution. |
+ |
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+*/ |
+ |
+/* This is a simple MDCT implementation that uses a N/4 complex FFT |
+ to do most of the work. It should be relatively straightforward to |
+ plug in pretty much and FFT here. |
+ |
+ This replaces the Vorbis FFT (and uses the exact same API), which |
+ was a bit too messy and that was ending up duplicating code |
+ (might as well use the same FFT everywhere). |
+ |
+ The algorithm is similar to (and inspired from) Fabrice Bellard's |
+ MDCT implementation in FFMPEG, but has differences in signs, ordering |
+ and scaling in many places. |
+*/ |
+ |
+#ifndef SKIP_CONFIG_H |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+#endif |
+ |
+#include "mdct.h" |
+#include "kiss_fft.h" |
+#include "_kiss_fft_guts.h" |
+#include <math.h> |
+#include "os_support.h" |
+#include "mathops.h" |
+#include "stack_alloc.h" |
+ |
+#if defined(MIPSr1_ASM) |
+#include "mips/mdct_mipsr1.h" |
+#endif |
+ |
+ |
+#ifdef CUSTOM_MODES |
+ |
+int clt_mdct_init(mdct_lookup *l,int N, int maxshift, int arch) |
+{ |
+ int i; |
+ kiss_twiddle_scalar *trig; |
+ int shift; |
+ int N2=N>>1; |
+ l->n = N; |
+ l->maxshift = maxshift; |
+ for (i=0;i<=maxshift;i++) |
+ { |
+ if (i==0) |
+ l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0, arch); |
+ else |
+ l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0], arch); |
+#ifndef ENABLE_TI_DSPLIB55 |
+ if (l->kfft[i]==NULL) |
+ return 0; |
+#endif |
+ } |
+ l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N-(N2>>maxshift))*sizeof(kiss_twiddle_scalar)); |
+ if (l->trig==NULL) |
+ return 0; |
+ for (shift=0;shift<=maxshift;shift++) |
+ { |
+ /* We have enough points that sine isn't necessary */ |
+#if defined(FIXED_POINT) |
+#if 1 |
+ for (i=0;i<N2;i++) |
+ trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2+16384),N)); |
+#else |
+ for (i=0;i<N2;i++) |
+ trig[i] = (kiss_twiddle_scalar)MAX32(-32767,MIN32(32767,floor(.5+32768*cos(2*M_PI*(i+.125)/N)))); |
+#endif |
+#else |
+ for (i=0;i<N2;i++) |
+ trig[i] = (kiss_twiddle_scalar)cos(2*PI*(i+.125)/N); |
+#endif |
+ trig += N2; |
+ N2 >>= 1; |
+ N >>= 1; |
+ } |
+ return 1; |
+} |
+ |
+void clt_mdct_clear(mdct_lookup *l, int arch) |
+{ |
+ int i; |
+ for (i=0;i<=l->maxshift;i++) |
+ opus_fft_free(l->kfft[i], arch); |
+ opus_free((kiss_twiddle_scalar*)l->trig); |
+} |
+ |
+#endif /* CUSTOM_MODES */ |
+ |
+/* Forward MDCT trashes the input array */ |
+#ifndef OVERRIDE_clt_mdct_forward |
+void clt_mdct_forward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out, |
+ const opus_val16 *window, int overlap, int shift, int stride, int arch) |
+{ |
+ int i; |
+ int N, N2, N4; |
+ VARDECL(kiss_fft_scalar, f); |
+ VARDECL(kiss_fft_cpx, f2); |
+ const kiss_fft_state *st = l->kfft[shift]; |
+ const kiss_twiddle_scalar *trig; |
+ opus_val16 scale; |
+#ifdef FIXED_POINT |
+ /* Allows us to scale with MULT16_32_Q16(), which is faster than |
+ MULT16_32_Q15() on ARM. */ |
+ int scale_shift = st->scale_shift-1; |
+#endif |
+ SAVE_STACK; |
+ (void)arch; |
+ scale = st->scale; |
+ |
+ N = l->n; |
+ trig = l->trig; |
+ for (i=0;i<shift;i++) |
+ { |
+ N >>= 1; |
+ trig += N; |
+ } |
+ N2 = N>>1; |
+ N4 = N>>2; |
+ |
+ ALLOC(f, N2, kiss_fft_scalar); |
+ ALLOC(f2, N4, kiss_fft_cpx); |
+ |
+ /* Consider the input to be composed of four blocks: [a, b, c, d] */ |
+ /* Window, shuffle, fold */ |
+ { |
+ /* Temp pointers to make it really clear to the compiler what we're doing */ |
+ const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1); |
+ const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1); |
+ kiss_fft_scalar * OPUS_RESTRICT yp = f; |
+ const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1); |
+ const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1; |
+ for(i=0;i<((overlap+3)>>2);i++) |
+ { |
+ /* Real part arranged as -d-cR, Imag part arranged as -b+aR*/ |
+ *yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2); |
+ *yp++ = MULT16_32_Q15(*wp1, *xp1) - MULT16_32_Q15(*wp2, xp2[-N2]); |
+ xp1+=2; |
+ xp2-=2; |
+ wp1+=2; |
+ wp2-=2; |
+ } |
+ wp1 = window; |
+ wp2 = window+overlap-1; |
+ for(;i<N4-((overlap+3)>>2);i++) |
+ { |
+ /* Real part arranged as a-bR, Imag part arranged as -c-dR */ |
+ *yp++ = *xp2; |
+ *yp++ = *xp1; |
+ xp1+=2; |
+ xp2-=2; |
+ } |
+ for(;i<N4;i++) |
+ { |
+ /* Real part arranged as a-bR, Imag part arranged as -c-dR */ |
+ *yp++ = -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2); |
+ *yp++ = MULT16_32_Q15(*wp2, *xp1) + MULT16_32_Q15(*wp1, xp2[N2]); |
+ xp1+=2; |
+ xp2-=2; |
+ wp1+=2; |
+ wp2-=2; |
+ } |
+ } |
+ /* Pre-rotation */ |
+ { |
+ kiss_fft_scalar * OPUS_RESTRICT yp = f; |
+ const kiss_twiddle_scalar *t = &trig[0]; |
+ for(i=0;i<N4;i++) |
+ { |
+ kiss_fft_cpx yc; |
+ kiss_twiddle_scalar t0, t1; |
+ kiss_fft_scalar re, im, yr, yi; |
+ t0 = t[i]; |
+ t1 = t[N4+i]; |
+ re = *yp++; |
+ im = *yp++; |
+ yr = S_MUL(re,t0) - S_MUL(im,t1); |
+ yi = S_MUL(im,t0) + S_MUL(re,t1); |
+ yc.r = yr; |
+ yc.i = yi; |
+ yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift); |
+ yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift); |
+ f2[st->bitrev[i]] = yc; |
+ } |
+ } |
+ |
+ /* N/4 complex FFT, does not downscale anymore */ |
+ opus_fft_impl(st, f2); |
+ |
+ /* Post-rotate */ |
+ { |
+ /* Temp pointers to make it really clear to the compiler what we're doing */ |
+ const kiss_fft_cpx * OPUS_RESTRICT fp = f2; |
+ kiss_fft_scalar * OPUS_RESTRICT yp1 = out; |
+ kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1); |
+ const kiss_twiddle_scalar *t = &trig[0]; |
+ /* Temp pointers to make it really clear to the compiler what we're doing */ |
+ for(i=0;i<N4;i++) |
+ { |
+ kiss_fft_scalar yr, yi; |
+ yr = S_MUL(fp->i,t[N4+i]) - S_MUL(fp->r,t[i]); |
+ yi = S_MUL(fp->r,t[N4+i]) + S_MUL(fp->i,t[i]); |
+ *yp1 = yr; |
+ *yp2 = yi; |
+ fp++; |
+ yp1 += 2*stride; |
+ yp2 -= 2*stride; |
+ } |
+ } |
+ RESTORE_STACK; |
+} |
+#endif /* OVERRIDE_clt_mdct_forward */ |
+ |
+#ifndef OVERRIDE_clt_mdct_backward |
+void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out, |
+ const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int stride, int arch) |
+{ |
+ int i; |
+ int N, N2, N4; |
+ const kiss_twiddle_scalar *trig; |
+ (void) arch; |
+ |
+ N = l->n; |
+ trig = l->trig; |
+ for (i=0;i<shift;i++) |
+ { |
+ N >>= 1; |
+ trig += N; |
+ } |
+ N2 = N>>1; |
+ N4 = N>>2; |
+ |
+ /* Pre-rotate */ |
+ { |
+ /* Temp pointers to make it really clear to the compiler what we're doing */ |
+ const kiss_fft_scalar * OPUS_RESTRICT xp1 = in; |
+ const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1); |
+ kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1); |
+ const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0]; |
+ const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev; |
+ for(i=0;i<N4;i++) |
+ { |
+ int rev; |
+ kiss_fft_scalar yr, yi; |
+ rev = *bitrev++; |
+ yr = S_MUL(*xp2, t[i]) + S_MUL(*xp1, t[N4+i]); |
+ yi = S_MUL(*xp1, t[i]) - S_MUL(*xp2, t[N4+i]); |
+ /* We swap real and imag because we use an FFT instead of an IFFT. */ |
+ yp[2*rev+1] = yr; |
+ yp[2*rev] = yi; |
+ /* Storing the pre-rotation directly in the bitrev order. */ |
+ xp1+=2*stride; |
+ xp2-=2*stride; |
+ } |
+ } |
+ |
+ opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1))); |
+ |
+ /* Post-rotate and de-shuffle from both ends of the buffer at once to make |
+ it in-place. */ |
+ { |
+ kiss_fft_scalar * yp0 = out+(overlap>>1); |
+ kiss_fft_scalar * yp1 = out+(overlap>>1)+N2-2; |
+ const kiss_twiddle_scalar *t = &trig[0]; |
+ /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the |
+ middle pair will be computed twice. */ |
+ for(i=0;i<(N4+1)>>1;i++) |
+ { |
+ kiss_fft_scalar re, im, yr, yi; |
+ kiss_twiddle_scalar t0, t1; |
+ /* We swap real and imag because we're using an FFT instead of an IFFT. */ |
+ re = yp0[1]; |
+ im = yp0[0]; |
+ t0 = t[i]; |
+ t1 = t[N4+i]; |
+ /* We'd scale up by 2 here, but instead it's done when mixing the windows */ |
+ yr = S_MUL(re,t0) + S_MUL(im,t1); |
+ yi = S_MUL(re,t1) - S_MUL(im,t0); |
+ /* We swap real and imag because we're using an FFT instead of an IFFT. */ |
+ re = yp1[1]; |
+ im = yp1[0]; |
+ yp0[0] = yr; |
+ yp1[1] = yi; |
+ |
+ t0 = t[(N4-i-1)]; |
+ t1 = t[(N2-i-1)]; |
+ /* We'd scale up by 2 here, but instead it's done when mixing the windows */ |
+ yr = S_MUL(re,t0) + S_MUL(im,t1); |
+ yi = S_MUL(re,t1) - S_MUL(im,t0); |
+ yp1[0] = yr; |
+ yp0[1] = yi; |
+ yp0 += 2; |
+ yp1 -= 2; |
+ } |
+ } |
+ |
+ /* Mirror on both sides for TDAC */ |
+ { |
+ kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1; |
+ kiss_fft_scalar * OPUS_RESTRICT yp1 = out; |
+ const opus_val16 * OPUS_RESTRICT wp1 = window; |
+ const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1; |
+ |
+ for(i = 0; i < overlap/2; i++) |
+ { |
+ kiss_fft_scalar x1, x2; |
+ x1 = *xp1; |
+ x2 = *yp1; |
+ *yp1++ = MULT16_32_Q15(*wp2, x2) - MULT16_32_Q15(*wp1, x1); |
+ *xp1-- = MULT16_32_Q15(*wp1, x2) + MULT16_32_Q15(*wp2, x1); |
+ wp1++; |
+ wp2--; |
+ } |
+ } |
+} |
+#endif /* OVERRIDE_clt_mdct_backward */ |