OLD | NEW |
(Empty) | |
| 1 /* Copyright (c) 2007-2008 CSIRO |
| 2 Copyright (c) 2007-2008 Xiph.Org Foundation |
| 3 Written by Jean-Marc Valin */ |
| 4 /* |
| 5 Redistribution and use in source and binary forms, with or without |
| 6 modification, are permitted provided that the following conditions |
| 7 are met: |
| 8 |
| 9 - Redistributions of source code must retain the above copyright |
| 10 notice, this list of conditions and the following disclaimer. |
| 11 |
| 12 - Redistributions in binary form must reproduce the above copyright |
| 13 notice, this list of conditions and the following disclaimer in the |
| 14 documentation and/or other materials provided with the distribution. |
| 15 |
| 16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| 20 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 21 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 22 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 23 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 24 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 25 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 26 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 */ |
| 28 |
| 29 /* This is a simple MDCT implementation that uses a N/4 complex FFT |
| 30 to do most of the work. It should be relatively straightforward to |
| 31 plug in pretty much and FFT here. |
| 32 |
| 33 This replaces the Vorbis FFT (and uses the exact same API), which |
| 34 was a bit too messy and that was ending up duplicating code |
| 35 (might as well use the same FFT everywhere). |
| 36 |
| 37 The algorithm is similar to (and inspired from) Fabrice Bellard's |
| 38 MDCT implementation in FFMPEG, but has differences in signs, ordering |
| 39 and scaling in many places. |
| 40 */ |
| 41 |
| 42 #ifndef SKIP_CONFIG_H |
| 43 #ifdef HAVE_CONFIG_H |
| 44 #include "config.h" |
| 45 #endif |
| 46 #endif |
| 47 |
| 48 #include "mdct.h" |
| 49 #include "kiss_fft.h" |
| 50 #include "_kiss_fft_guts.h" |
| 51 #include <math.h> |
| 52 #include "os_support.h" |
| 53 #include "mathops.h" |
| 54 #include "stack_alloc.h" |
| 55 |
| 56 #if defined(MIPSr1_ASM) |
| 57 #include "mips/mdct_mipsr1.h" |
| 58 #endif |
| 59 |
| 60 |
| 61 #ifdef CUSTOM_MODES |
| 62 |
| 63 int clt_mdct_init(mdct_lookup *l,int N, int maxshift, int arch) |
| 64 { |
| 65 int i; |
| 66 kiss_twiddle_scalar *trig; |
| 67 int shift; |
| 68 int N2=N>>1; |
| 69 l->n = N; |
| 70 l->maxshift = maxshift; |
| 71 for (i=0;i<=maxshift;i++) |
| 72 { |
| 73 if (i==0) |
| 74 l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0, arch); |
| 75 else |
| 76 l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0], arch); |
| 77 #ifndef ENABLE_TI_DSPLIB55 |
| 78 if (l->kfft[i]==NULL) |
| 79 return 0; |
| 80 #endif |
| 81 } |
| 82 l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N-(N2>>maxshift))*sizeof(k
iss_twiddle_scalar)); |
| 83 if (l->trig==NULL) |
| 84 return 0; |
| 85 for (shift=0;shift<=maxshift;shift++) |
| 86 { |
| 87 /* We have enough points that sine isn't necessary */ |
| 88 #if defined(FIXED_POINT) |
| 89 #if 1 |
| 90 for (i=0;i<N2;i++) |
| 91 trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),
N2+16384),N)); |
| 92 #else |
| 93 for (i=0;i<N2;i++) |
| 94 trig[i] = (kiss_twiddle_scalar)MAX32(-32767,MIN32(32767,floor(.5+32768*
cos(2*M_PI*(i+.125)/N)))); |
| 95 #endif |
| 96 #else |
| 97 for (i=0;i<N2;i++) |
| 98 trig[i] = (kiss_twiddle_scalar)cos(2*PI*(i+.125)/N); |
| 99 #endif |
| 100 trig += N2; |
| 101 N2 >>= 1; |
| 102 N >>= 1; |
| 103 } |
| 104 return 1; |
| 105 } |
| 106 |
| 107 void clt_mdct_clear(mdct_lookup *l, int arch) |
| 108 { |
| 109 int i; |
| 110 for (i=0;i<=l->maxshift;i++) |
| 111 opus_fft_free(l->kfft[i], arch); |
| 112 opus_free((kiss_twiddle_scalar*)l->trig); |
| 113 } |
| 114 |
| 115 #endif /* CUSTOM_MODES */ |
| 116 |
| 117 /* Forward MDCT trashes the input array */ |
| 118 #ifndef OVERRIDE_clt_mdct_forward |
| 119 void clt_mdct_forward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scal
ar * OPUS_RESTRICT out, |
| 120 const opus_val16 *window, int overlap, int shift, int stride, int arch) |
| 121 { |
| 122 int i; |
| 123 int N, N2, N4; |
| 124 VARDECL(kiss_fft_scalar, f); |
| 125 VARDECL(kiss_fft_cpx, f2); |
| 126 const kiss_fft_state *st = l->kfft[shift]; |
| 127 const kiss_twiddle_scalar *trig; |
| 128 opus_val16 scale; |
| 129 #ifdef FIXED_POINT |
| 130 /* Allows us to scale with MULT16_32_Q16(), which is faster than |
| 131 MULT16_32_Q15() on ARM. */ |
| 132 int scale_shift = st->scale_shift-1; |
| 133 #endif |
| 134 SAVE_STACK; |
| 135 (void)arch; |
| 136 scale = st->scale; |
| 137 |
| 138 N = l->n; |
| 139 trig = l->trig; |
| 140 for (i=0;i<shift;i++) |
| 141 { |
| 142 N >>= 1; |
| 143 trig += N; |
| 144 } |
| 145 N2 = N>>1; |
| 146 N4 = N>>2; |
| 147 |
| 148 ALLOC(f, N2, kiss_fft_scalar); |
| 149 ALLOC(f2, N4, kiss_fft_cpx); |
| 150 |
| 151 /* Consider the input to be composed of four blocks: [a, b, c, d] */ |
| 152 /* Window, shuffle, fold */ |
| 153 { |
| 154 /* Temp pointers to make it really clear to the compiler what we're doing
*/ |
| 155 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1); |
| 156 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1); |
| 157 kiss_fft_scalar * OPUS_RESTRICT yp = f; |
| 158 const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1); |
| 159 const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1; |
| 160 for(i=0;i<((overlap+3)>>2);i++) |
| 161 { |
| 162 /* Real part arranged as -d-cR, Imag part arranged as -b+aR*/ |
| 163 *yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2); |
| 164 *yp++ = MULT16_32_Q15(*wp1, *xp1) - MULT16_32_Q15(*wp2, xp2[-N2]); |
| 165 xp1+=2; |
| 166 xp2-=2; |
| 167 wp1+=2; |
| 168 wp2-=2; |
| 169 } |
| 170 wp1 = window; |
| 171 wp2 = window+overlap-1; |
| 172 for(;i<N4-((overlap+3)>>2);i++) |
| 173 { |
| 174 /* Real part arranged as a-bR, Imag part arranged as -c-dR */ |
| 175 *yp++ = *xp2; |
| 176 *yp++ = *xp1; |
| 177 xp1+=2; |
| 178 xp2-=2; |
| 179 } |
| 180 for(;i<N4;i++) |
| 181 { |
| 182 /* Real part arranged as a-bR, Imag part arranged as -c-dR */ |
| 183 *yp++ = -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2); |
| 184 *yp++ = MULT16_32_Q15(*wp2, *xp1) + MULT16_32_Q15(*wp1, xp2[N2]); |
| 185 xp1+=2; |
| 186 xp2-=2; |
| 187 wp1+=2; |
| 188 wp2-=2; |
| 189 } |
| 190 } |
| 191 /* Pre-rotation */ |
| 192 { |
| 193 kiss_fft_scalar * OPUS_RESTRICT yp = f; |
| 194 const kiss_twiddle_scalar *t = &trig[0]; |
| 195 for(i=0;i<N4;i++) |
| 196 { |
| 197 kiss_fft_cpx yc; |
| 198 kiss_twiddle_scalar t0, t1; |
| 199 kiss_fft_scalar re, im, yr, yi; |
| 200 t0 = t[i]; |
| 201 t1 = t[N4+i]; |
| 202 re = *yp++; |
| 203 im = *yp++; |
| 204 yr = S_MUL(re,t0) - S_MUL(im,t1); |
| 205 yi = S_MUL(im,t0) + S_MUL(re,t1); |
| 206 yc.r = yr; |
| 207 yc.i = yi; |
| 208 yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift); |
| 209 yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift); |
| 210 f2[st->bitrev[i]] = yc; |
| 211 } |
| 212 } |
| 213 |
| 214 /* N/4 complex FFT, does not downscale anymore */ |
| 215 opus_fft_impl(st, f2); |
| 216 |
| 217 /* Post-rotate */ |
| 218 { |
| 219 /* Temp pointers to make it really clear to the compiler what we're doing
*/ |
| 220 const kiss_fft_cpx * OPUS_RESTRICT fp = f2; |
| 221 kiss_fft_scalar * OPUS_RESTRICT yp1 = out; |
| 222 kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1); |
| 223 const kiss_twiddle_scalar *t = &trig[0]; |
| 224 /* Temp pointers to make it really clear to the compiler what we're doing
*/ |
| 225 for(i=0;i<N4;i++) |
| 226 { |
| 227 kiss_fft_scalar yr, yi; |
| 228 yr = S_MUL(fp->i,t[N4+i]) - S_MUL(fp->r,t[i]); |
| 229 yi = S_MUL(fp->r,t[N4+i]) + S_MUL(fp->i,t[i]); |
| 230 *yp1 = yr; |
| 231 *yp2 = yi; |
| 232 fp++; |
| 233 yp1 += 2*stride; |
| 234 yp2 -= 2*stride; |
| 235 } |
| 236 } |
| 237 RESTORE_STACK; |
| 238 } |
| 239 #endif /* OVERRIDE_clt_mdct_forward */ |
| 240 |
| 241 #ifndef OVERRIDE_clt_mdct_backward |
| 242 void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca
lar * OPUS_RESTRICT out, |
| 243 const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int strid
e, int arch) |
| 244 { |
| 245 int i; |
| 246 int N, N2, N4; |
| 247 const kiss_twiddle_scalar *trig; |
| 248 (void) arch; |
| 249 |
| 250 N = l->n; |
| 251 trig = l->trig; |
| 252 for (i=0;i<shift;i++) |
| 253 { |
| 254 N >>= 1; |
| 255 trig += N; |
| 256 } |
| 257 N2 = N>>1; |
| 258 N4 = N>>2; |
| 259 |
| 260 /* Pre-rotate */ |
| 261 { |
| 262 /* Temp pointers to make it really clear to the compiler what we're doing
*/ |
| 263 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in; |
| 264 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1); |
| 265 kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1); |
| 266 const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0]; |
| 267 const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev; |
| 268 for(i=0;i<N4;i++) |
| 269 { |
| 270 int rev; |
| 271 kiss_fft_scalar yr, yi; |
| 272 rev = *bitrev++; |
| 273 yr = S_MUL(*xp2, t[i]) + S_MUL(*xp1, t[N4+i]); |
| 274 yi = S_MUL(*xp1, t[i]) - S_MUL(*xp2, t[N4+i]); |
| 275 /* We swap real and imag because we use an FFT instead of an IFFT. */ |
| 276 yp[2*rev+1] = yr; |
| 277 yp[2*rev] = yi; |
| 278 /* Storing the pre-rotation directly in the bitrev order. */ |
| 279 xp1+=2*stride; |
| 280 xp2-=2*stride; |
| 281 } |
| 282 } |
| 283 |
| 284 opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1))); |
| 285 |
| 286 /* Post-rotate and de-shuffle from both ends of the buffer at once to make |
| 287 it in-place. */ |
| 288 { |
| 289 kiss_fft_scalar * yp0 = out+(overlap>>1); |
| 290 kiss_fft_scalar * yp1 = out+(overlap>>1)+N2-2; |
| 291 const kiss_twiddle_scalar *t = &trig[0]; |
| 292 /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the |
| 293 middle pair will be computed twice. */ |
| 294 for(i=0;i<(N4+1)>>1;i++) |
| 295 { |
| 296 kiss_fft_scalar re, im, yr, yi; |
| 297 kiss_twiddle_scalar t0, t1; |
| 298 /* We swap real and imag because we're using an FFT instead of an IFFT.
*/ |
| 299 re = yp0[1]; |
| 300 im = yp0[0]; |
| 301 t0 = t[i]; |
| 302 t1 = t[N4+i]; |
| 303 /* We'd scale up by 2 here, but instead it's done when mixing the windo
ws */ |
| 304 yr = S_MUL(re,t0) + S_MUL(im,t1); |
| 305 yi = S_MUL(re,t1) - S_MUL(im,t0); |
| 306 /* We swap real and imag because we're using an FFT instead of an IFFT.
*/ |
| 307 re = yp1[1]; |
| 308 im = yp1[0]; |
| 309 yp0[0] = yr; |
| 310 yp1[1] = yi; |
| 311 |
| 312 t0 = t[(N4-i-1)]; |
| 313 t1 = t[(N2-i-1)]; |
| 314 /* We'd scale up by 2 here, but instead it's done when mixing the windo
ws */ |
| 315 yr = S_MUL(re,t0) + S_MUL(im,t1); |
| 316 yi = S_MUL(re,t1) - S_MUL(im,t0); |
| 317 yp1[0] = yr; |
| 318 yp0[1] = yi; |
| 319 yp0 += 2; |
| 320 yp1 -= 2; |
| 321 } |
| 322 } |
| 323 |
| 324 /* Mirror on both sides for TDAC */ |
| 325 { |
| 326 kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1; |
| 327 kiss_fft_scalar * OPUS_RESTRICT yp1 = out; |
| 328 const opus_val16 * OPUS_RESTRICT wp1 = window; |
| 329 const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1; |
| 330 |
| 331 for(i = 0; i < overlap/2; i++) |
| 332 { |
| 333 kiss_fft_scalar x1, x2; |
| 334 x1 = *xp1; |
| 335 x2 = *yp1; |
| 336 *yp1++ = MULT16_32_Q15(*wp2, x2) - MULT16_32_Q15(*wp1, x1); |
| 337 *xp1-- = MULT16_32_Q15(*wp1, x2) + MULT16_32_Q15(*wp2, x1); |
| 338 wp1++; |
| 339 wp2--; |
| 340 } |
| 341 } |
| 342 } |
| 343 #endif /* OVERRIDE_clt_mdct_backward */ |
OLD | NEW |